11 Matching Results

Search Results

Advanced search parameters have been applied.

Recent progress on photonic band gap accelerator cavities

Description: We report on the current status of our program to apply Photonic Band Gap (PBG) concepts to produce novel high-energy, high-intensity accelerator cavities. The PBG design on which we have concentrated our initial efforts consists of a square array of metal cylinders, terminated by conducting or superconducting sheets, and surrounded by microwave absorber on the periphery of the structure. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. In previous work, we have proposed that this structure could be utilized as an accelerator cavity, with advantageous properties over conventional cavity designs. In the present work, we present further studies, including MAFIA-based numerical calculations and experimental measurements, demonstrating the feasibility of using the proposed structure in a real accelerator application.
Date: February 1997
Creator: Smith, D. R.; Li, D. & Vier, D. C.
Partner: UNT Libraries Government Documents Department

CT imaging techniques for two-phase and three-phase in-situ saturation measurements

Description: The aim of this research is to use the SUPRI 3D steam injection laboratory model to establish a reliable method for 3-phase in-situ saturation measurements, and thereafter investigate the mechanism of steamflood at residual oil saturation. Demiral et al. designed and constructed a three dimensional laboratory model that can be used to measure temperature, pressure and heat loss data. The model is also designed so that its construction materials are not a limiting factor for CT scanning. We have used this model for our study. In this study, we saturated the model with mineral oil, and carried out waterflood until residual oil saturation. Steamflood was then carried out. A leak appeared at the bottom of the model. Despite this problem, the saturation results, obtained by using 2-phase and 3-phase saturation equations and obtained from the Cat scanner, were compared with the saturations obtained from material balance. The errors thus obtained were compared with those obtained by an error analysis carried out on the saturation equations. This report gives details of the experimental procedures, the data acquisition and data processing computer programs, and the analysis of a steamflood experiment carried out at residual oil saturation.
Date: June 1, 1997
Creator: Sharma, B. C.; Brigham, W. E. & Castanier, L. M.
Partner: UNT Libraries Government Documents Department

Modification of reservoir chemical and physical factors in steamfloods to increase heavy oil recovery. [Quarterly report], January 1--March 31, 1997

Description: Thermal methods, and particularly steam injection, are currently recognized as the most promising for the efficient recovery of heavy oil. Despite significant progress, however, important technical issues remain open. Specifically, still inadequate is our knowledge of the complex interaction between porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases, and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale heterogeneity is largely unexplored. The objectives of this contract are to continue previous work and to carry out new fundamental studies in the following areas of interest to thermal recovery: displacement and flow properties of fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobility control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The specific projects are motivated by and address the need to improve heavy oil recovery from typical reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal wells. During this quarter, work continued on the development of relative permeabilities during steam displacement. Most of the work concentrated on the representation of the three-phase flow in terms of a double-drainage process. Work continued on the optimization of recovery processes in heterogeneous reservoirs by using optimal control methods. The effort at present is concentrating in fine-tuning the optimization algorithm as well as in developing control methodologies with different constraints. In parallel, we continued experiments in a Hele-Shaw cell with two controlled injection wells and one production well. In the area of chemical additives work continued on the behavior of non-Newtonian fluid flow and on foam displacements in porous media.
Date: August 1, 1997
Creator: Yortsos, Y. C.
Partner: UNT Libraries Government Documents Department

Induced seismicity. Final report

Description: The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models.
Date: September 18, 1997
Creator: Segall, P.
Partner: UNT Libraries Government Documents Department

CT measurements of two-phase flow in fractured porous media

Description: The simulation of flow in naturally fractured reservoirs commonly divides the reservoir into two continua - the matrix system and the fracture system. Flow equations are written presuming that the primary flow between grid blocks occurs through the fracture system and that the primary fluid storage is in the matrix system. The dual porosity formulation of the equations assumes that there is no flow between matrix blocks while the dual permeability formulation allows fluid movement between matrix blocks. Since most of the fluid storage is contained in the matrix, recovery is dominated by the transfer of fluid from the matrix to the high conductivity fractures. The physical mechanisms influencing this transfer have been evaluated primarily through numerical studies. Relatively few experimental studies have investigated the transfer mechanisms. Early studies focused on the prediction of reservoir recoveries from the results of scaled experiments on single reservoir blocks. Recent experiments have investigated some of the mechanisms that are dominant in gravity drainage situations and in small block imbibition displacements. The mechanisms active in multiphase flow in fractured media need to be further illuminated, since some of the experimental results appear to be contradictory. This report describes the design, construction, and preliminary results of an experiment that studies imbibition displacement in two fracture blocks. Multiphase (oil/water) displacements will be conducted at the same rate on three core configurations. The configurations are a compact core, a two-block system with a 1 mm spacer between the blocks, and a two-block system with no spacer. The blocks are sealed in epoxy so that saturation measurements can be made throughout the displacement experiments using a Computed Tomography (CT) scanner.
Date: June 1, 1997
Creator: Hughes, R. G.; Brigham, W. E. & Castanier, L. M.
Partner: UNT Libraries Government Documents Department

Mechanisms, chemistry and kinetics of the anaerobic biodegradation of cis-dichloroethylene and vinyl chloride. First annual progress report, September 15, 1996--September 14, 1997

Description: 'This three-year project is to study the anaerobic biological conversion of cis-1,2- dichloroethene (cDCE) and vinyl Chloride (VC) to ethene. The study is being conducted in three separate phases, the first to better understand the mechanisms involved in cDCE and VC biodegradation, the second to evaluate the chemistry of the processes involved, and the third, to study factors affecting reaction kinetics. Major funding is being provided by the US Department of Energy, but the DuPont Chemical Company has also agreed to directly cost-share on the project at a rate of $75,000 per year for the three year period. Tetrachloroethylene (PCE) and trichloroethylene (TCE) are solvents that are among the most widely occurring organic groundwater contaminants. The biological anaerobic reduction-of chlorinated aliphatic hydrocarbons (CAHs) such as PCE and TCE to cDCE and VC in groundwater was reported in the early 1980s. Further reduction of PCE and its intermediates to ethene was reported in 1989. Several pure cultures of anaerobic bacteria have been found to reductively dehalogenate PCE to cDCE Rates of reduction of PCE and TCE to cDCE are high and the need for electron donor addition for the reactions is small. However, the subsequent reduction of cDCE to VC, and then of VC to the harmless end product, ethene, is much slower and only recently has a pure culture been reported that is capable of reducing cDCE to VC or VC to ethene. There are numerous. reports of such conversions in mixed cultures. The reduction of cDCE and VC to ethene is where basic research is most needed and is the subject of this study.'
Date: January 1, 1997
Creator: McCarty, P.L. & Spormann, A.
Partner: UNT Libraries Government Documents Department

Sorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants. 1997 annual progress report

Description: 'This project fits well within the overall objectives established by the Environmental Management and Science Program to promote long-term basic research that will provide the tools for more effective and lower cost remediation efforts at DOE sites where hazardous and radioactive wastes or contamination zones are present. In order to develop the necessary remediation technology it has been recognized that a fundamental understanding of the various chemical and physical factors associated with waste treatment and contaminant transport must be established. Some of the specific topics include waste pretreatment, volume reduction, immobilization, separation methods, the interactions of actinides and heavy metals with surfaces in the presence of organic residues and co-contaminants, contaminant transport in the environment, and long-term storage site assessment. This project has direct and potential application in all these areas. The interaction and partitioning of contaminant metals and radionuclides between solution and solid- surface phases is a fundamental issue for waste treatment and predicting contaminant transport in the environment. Many factors are involved in the functional relationships describing chemical reactivity and physical distribution of chemical species. These include modification of chemical behavior by the suite of chemical co-contaminants in a system. Organic complexing agents are common components of waste mixtures and include both synthetic components specifically introduced as part of processing methods, and poorly characterized compounds that were introduced separately or evolved within the highly reactive wastes. Natural organic complexing agents such as citric acid and siderophores are common in nature and represent factors that will further influence contaminant transport in soils and aquatic systems. Knowledge of the existence of a metal-organic complex cannot automatically be used to predict changes in solid-solution partitioning of the metal or the rates of changes in partitioning as a consequence of ligand or metal exchange. Formation of metal ion-ligand-oxide surface ternary complexes can ...
Date: October 17, 1997
Creator: Leckie, J. & Redden, G.
Partner: UNT Libraries Government Documents Department

Use of sonication for in-well softening of semivolatile organic compounds. 1997 annual progress report

Description: 'This project investigates the in-situ degradation of semivolatile organic compounds (SVOCs) and volatile organic compounds (VOCs) using in-well sonication, in-well vapor stripping, and bioremediation. Pretreating groundwaters with sonication techniques in-situ would form VOCs that can be effectively removed by in-well vapor stripping and bioremediation. The mechanistic studies focus on the coupling of megasonics and ultrasonics to soften (i.e., partially degrade) the SVOCs; oxidative reaction mechanism studies; surface corrosion studies (on the reactor walls/well); enhancement due to addition of oxidants, quantification of the hydroxyl radical formation; identification/quantification of degradation products; volatility/degradability of the treated waters; development of a computer simulation model to describe combined in-well sonication/in-well vapor stripping/bioremediation; systems analysis/economic analysis; large laboratory-scale experiment verification; and field demonstration of the integrated technology. Benefits of this approach include: (1) Remediation is performed in-situ; (2) The treatment systems complement each other; their combination can drastically reduce or remove SVOCs and VOCs; (3) Ability to convert hard-to-degrade organics into more volatile organic compounds; (4) Ability to remove residual VOCs and softened SVOCs through the combined action of in-well vapor stripping and biodegradation; (5) Does not require handling or disposing of water at the ground surface; and (6) Cost-effective and improved efficiency, resulting in shortened clean-up times to remediate a site.'
Date: January 1997
Creator: Peters, R. W.; Manning, J.; Hoffman, M. R. & Gorelick, S.
Partner: UNT Libraries Government Documents Department

Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, January 1--March 31, 1997

Description: This document is the eleventh quarterly status report on a project that is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve the technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. Activities during this report period were associated with the numerical encoding of the pyrite combustion model. The computer program resulting from the efforts put forth is intended to provide predictive capabilities with respect to pyrite composition during pulverized coal firing. The subroutines that have been written to track the fate of a pyrite particle of specified size and composition flowing in a gaseous environment of specified oxygen concentration, temperature, and velocity are being debugged and tested.
Date: December 31, 1997
Creator: Akan-Etuk, A. E. J. & Mitchell, R. E.
Partner: UNT Libraries Government Documents Department

Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, October 1--December 31, 1996

Description: This document is the tenth quarterly status report on a project that is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO{sub x} pulverized coal (P.C.) combustion. The research project is intended to advance PETC`s efforts to improve the technical understanding of the high-temperature chemical and physical processes involved in the utilization of coal. The work focuses on the mechanistic description and rate quantification of the effects of fuel properties and combustion environment on the oxidation of iron pyrite to form the non-slagging species magnetite. During this report period numerical encoding of a pyrite combustion model was embarked upon. The effort was intended to lead to predictive capabilities with respect to pyrite composition during pulverized coal firing. Many subroutines were written of a FORTRAN computer program to track the fate of a pyrite particle by integrating time-dependent differential equations for species, momentum, and energy conservation. Inputs to the program include fuel-related properties such as particle size and composition, as well as properties of the reactor environment such as oxygen level, temperature, gas velocity, and a set of initial and final positions.
Date: December 31, 1997
Creator: Akan-Etuk, A. E. J. & Mitchell, R. E.
Partner: UNT Libraries Government Documents Department

Mechanisms of pyrite oxidation to non-slagging species. Quarterly report, July 1, 1996--September 30, 1996

Description: The information presented constitutes the report for the period July 1 to September 30, 1996. Characterization of intraparticle mass transport limitations during pyrite oxidation was embarked upon. The effort was intended to confirm that intraparticle transport limitations are negligible. Samples of 20 micron pyrite particles extracted from the flow reactor after oxidation at 1550 K in 1% oxygen level were analyzed. The samples has been extracted after reaction times of 42 ms, 52 ms, 77 ms, and 146 ms. For these samples, the bulk product compositions previously determined by X-ray diffraction analysis consisted of varying proportions of FeS{sub 2}, Fe{sub 1-X}S, FeO, and Fe{sub 3}O{sub 4}. The particles were analyzed to determine if the iron compounds previously identified by bulk X- ray diffraction analysis (XRD) were well mixed within individual particles. The extracted pyrite particles, epoxied and sectioned, were subjected to a variety of analytical techniques using the microprobe (JEOL 733 Superprobe). Secondary electron and backscatter electron imaging was performed. Iron, sulfur, and oxygen elemental X-ray maps were generated. Energy dispersive spectrometry was used for qualitative elemental analysis of selected particles. These particles were subsequently subjected to qualitative elemental analysis by wavelength dispersive spectrometry (WDS) using Fe{sub 2}O{sub 3} and FeS{sub 2} as standards. During WDS analysis, micron-radius hemispherical volumes bisected by sectioning plane were sampled. The microprobe analyses of oxidized pyrite showed that, generally, particles could be modeled as well-stirred, having negligible compositional gradients of the scale of the particle radius. In all four samples of pyrite analyzed, there were particle edge effects. Furthermore, there were finger-like projections of different phases in mixed-phase particles. Nevertheless, compositional gradients were of concern only in the 77 ms samples.
Date: March 1, 1997
Creator: Akan-Etuk, A.E.J. & Mitchell, R.E.
Partner: UNT Libraries Government Documents Department