27 Matching Results

Search Results

Advanced search parameters have been applied.

First Results of the LCLS Laser-Heater System

Description: The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order ...
Date: December 16, 2011
Creator: Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y. et al.
Partner: UNT Libraries Government Documents Department

Dynamic SU(2) structure from seven-branes

Description: We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.
Date: December 16, 2010
Creator: Heidenreich, Ben; McAllister, Liam; /Cornell U., Phys. Dept.; Torroba, Gonzalo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Evaluation and Compensation of Detector Solenoid Effects on Disrupted Beam in the ILC 14 mrad Extraction Line

Description: This paper presents calculations of detector solenoid effects on disrupted primary beam in the ILC 14 mrad extraction line. Particle tracking simulations are performed for evaluation of primary beam loss along the line as well as of beam distribution and polarization at Compton Interaction Point. The calculations are done both without and with solenoid compensation. The results are obtained for the baseline ILC energy of 500 GeV center-of-mass and three options of beam parameters.
Date: December 18, 2008
Creator: Toprek, Dragan; /VINCA Inst. Nucl. Sci., Belgrade; Nosochkov, Yuri & /SLAC
Partner: UNT Libraries Government Documents Department

Bunch Length Measurements at the ATF Damping Ring in April 2000

Description: We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with the wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for studying IBS, and an indispensable ingredient for this study is a knowledge of the longitudinal phase space of the beam. The results of earlier bunch lengthening measurements in the ATF can be found in Refs. [2]-[4]. Measurements of current dependent effects, especially bunch length measurements using a streak camera, can be difficult to perform accurately. For example, space charge in the camera itself can lead to systematic errors in the measurement results. It is important the results be accurate and reproducible. In the measurements of both December 1998[3] and December 1999[4], by using light filters, the authors first checked that ...
Date: December 19, 2005
Creator: Bane, K.L.F.; /SLAC; Naito, T.; Okugi, T.; Urakawa, J. & /KEK, Tsukuba
Partner: UNT Libraries Government Documents Department

Analysis of B -> omega lv Decays with BaBar (SULI)

Description: As part of the BaBar project at SLAC to study the properties of B mesons, we have carried out a study of the exclusive charmless semileptonic decay mode B {yields} wlv, which can be used to determine the Cabbibo-Kobayashi-Maskawa matrix element V{sub ub}. Using simulated event samples, this study focuses on determining criteria on variables for selection of B {yields} wlv signal and suppression of background from other types of B{bar B} events and continuum processes. In addition, we determine optimal cuts on variables to ensure a good neutrino reconstruction. With these selection cuts, we were able to achieve a signal-to-background ratio of 0.68 and a signal efficiency of the order of 1%. Applying these cuts to a sample of 83 million B{bar B} events recorded by BaBar in e{sup +}e{sup -} collisions at the {Upsilon}(4S) resonance, we obtain a yield of 115 {+-} 19 B {yields} wlv decays.
Date: December 15, 2005
Creator: Chu, Yi-Wen; /MIT; Littlejohn, B.; /Unlisted; Dingfelder, J. & /SLAC
Partner: UNT Libraries Government Documents Department

Background Characterization for Thermal Ion Release Experiments with 224Ra

Description: The Enriched Xenon Observatory for neutrinoless double beta decay uses {sup 136}Ba identification as a means for verifying the decay's occurrence in {sup 136}Xe. A current challenge is the release of Ba ions from the Ba extraction probe, and one possible solution is to heat the probe to high temperatures to release the ions. The investigation of this method requires a characterization of the alpha decay background in our test apparatus, which uses a {sup 228}Th source that produces {sup 224}Ra daughters, the ionization energies of which are similar to those of Ba. For this purpose, we ran a background count with our apparatus maintained at a vacuum, and then three counts with the apparatus filled with Xe gas. We were able to match up our alpha spectrum in vacuum with the known decay scheme of {sup 228}Th, while the spectrum in xenon gas had too many unresolved ambiguities for an accurate characterization. We also found that the alpha decays occurred at a near-zero rate both in vacuum and in xenon gas, which indicates that the rate was determined by {sup 228}Th decays. With these background measurements, we can in the future make a more accurate measurement of the temperature dependency of the ratio of ions to neutral atoms released from the hot surface of the probe, which may lead to a successful method of Ba ion release.
Date: December 15, 2005
Creator: Kwong, H.; /Stanford U., Phys. Dept.; Rowson, P. & /SLAC
Partner: UNT Libraries Government Documents Department

The BaBar Gas Bubbler Upgrade and Evaluation

Description: The Instrumented Flux Return region (muon and K{sub L} detection barrel) of the BaBar detector at SLAC requires careful monitoring of the gas flow through the detector array. This is currently done by a system of digital gas bubblers which monitor the flow rate by using photogate technology to detect the presence of bubbles formed by gas flowing through an internal oil chamber. Recently, however, a design flaw was discovered in these bubblers. Because the bubblers are connected directly to the detector array with no filter, during rises in atmospheric pressure or a drop in the gas flow rate (e.g. when the gas system is shut off for maintenance), the oil in this chamber could be forced backwards into the detector tubes. To compensate for this problem, we upgraded the existing gas bubbler systems by installing metal traps into the old gas lines to capture the oil. This installation was followed by an evaluation of the retro-fitted bubblers during which we determined a relationship between the bubble counting rate and the actual gas flow rate, but encountered recurring problems with baseline fluctuations and unstable bubble counting rates. Future work will involve the study of how these instabilities develop, and whether or not they can be mitigated.
Date: December 15, 2005
Creator: Gan, Yu; U., /Princeton; Young, C. & /SLAC
Partner: UNT Libraries Government Documents Department

Investigating the Infrared Properties of Candidate Blazars

Description: Blazars are active galaxies with super-massive black holes, containing jets that accelerate plasma material and produce radiation. They are unique among other active galaxies for properties such as rapid variability and the lack of emission lines. The double-peaked spectral energy distribution (SED) found for most blazar objects suggests that synchrotron radiation and Compton scattering occurs in the jets. This study is an investigation of the infrared (IR) spectra of a selected population of blazar candidates, focusing on the IR properties of objects within the three types of blazars currently recognized by their spectral characteristics at other wavelengths. Using blazar candidates found in a recent study of the northern sky (Sowards-Emmerd et al., The Astrophysical Journal, 2005), IRAS data for 12, 25, 60, and 100 {micro}m, as well as any available data from 2MASS and EGRET, were located. The synchrotron peak of the SED of each object was expected to occur anywhere in the infrared (IR) to soft X-ray range. However, peaks were generally found to lie in the IR range, suggesting potential selection biases. An analysis of selection techniques reveals that the figure of merit used in the original survey is engineered to select objects with a Compton scattering peak luminosity occurring in the GeV range, the energy band most easily detected by the upcoming GLAST mission. Therefore, this figure of merit selection process should be used to compile a list of blazar candidates for further study in anticipation of the launch of the satellite.
Date: December 15, 2005
Creator: Hall, Jessica & /SLAC, /Southern California U.
Partner: UNT Libraries Government Documents Department

Balloon-Borne Gamma-Ray Polarimeter (PoGO) to Study Black Holes, Pulsars, and AGN Jets: Design and Calibration(SULI)

Description: Polarization measurements at X-ray and gamma-ray energies can provide crucial information on the emission region around massive compact objects such as black holes and neutron stars. The Polarized Gamma-ray Observer (PoGO) is a new balloon-borne instrument designed to measure polarization from such astrophysical objects in the 30-100 keV range, under development by an international collaboration with members from United States, Japan, Sweden and France. The PoGO instrument has been designed by the collaboration and several versions of prototype models have been built at SLAC. The purpose of this experiment is to test the latest prototype model with a radioactive gamma-ray source. For this, we have to polarize gamma-rays in a laboratory environment. Unpolarized gamma-rays from Am241 (59.5 keV) were Compton scattered at around 90 degrees for this purpose. Computer simulation of the scattering process in the setup predicts a 86% polarization. The polarized beam was then used to irradiate the prototype PoGO detector. The data taken in this experiment showed a clear polarization signal, with a measured azimuthal modulation factor of 0.35 {+-} 0.02. The measured modulation is in very close agreement with the value expected from a previous beam test study of a polarized gamma-ray beam at the Argonne National Laboratories Advanced Photon Source. This experiment has demonstrated that the PoGO instrument (or any other polarimeter in the energy range) can be tested in a libratory with a simple setup to a similar accuracy.
Date: December 15, 2005
Creator: Apte, Zachary & /SLAC, /Hampshire Coll.
Partner: UNT Libraries Government Documents Department

Development of a 2D Vlasov Solver for Longitudinal BeamDynamics in Single-Pass Systems

Description: Direct numerical methods for solving the Vlasov equation offer some advantages over macroparticle simulations, as they do not suffer from the numerical noise inherent in using a number of macroparticles smaller than the bunch population. Unfortunately these methods are more time-consuming and generally considered impractical in a full 6D phase space. However, in a lower-dimension phase space they may become attractive if the beam dynamics is sensitive to the presence of small charge-density fluctuations and a high resolution is needed. In this paper we present a 2D Vlasov solver for studying the longitudinal beam dynamics in single-pass systems of interest for X-FEL's, where characterization of the microbunching instability is of particular relevance. The solver includes a model to account for the smearing effect of a finite horizontal emittance on microbunching. We explore the effect of space charge and coherent synchrotron radiation (CSR). The numerical solutions are compared with results from linear theory and good agreement is found in the regime where linear theory applies.
Date: December 12, 2006
Creator: Venturini, M.; Warnock, R.; Zholents, A. & /SLAC
Partner: UNT Libraries Government Documents Department

The EGS5 Code System

Description: In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS ...
Date: December 20, 2005
Creator: Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan et al.
Partner: UNT Libraries Government Documents Department

Relative Humidity in Limited Streamer Tubes for Stanford Linear Accelerator Center's BaBar Detector

Description: The BABAR Detector at the Stanford Linear Accelerator Center studies the decay of B mesons created in e{sup +}e{sup -} collisions. The outermost layer of the detector, used to detect muons and neutral hadrons created during this process, is being upgraded from Resistive Plate Chambers (RPCs) to Limited Streamer Tubes (LSTs). The standard-size LST tube consists of eight cells, where a silver-plated wire runs down the center of each. A large potential difference is placed between the wires and ground. Gas flows through a series of modules connected with tubing, typically four. LSTs must be carefully tested before installation, as it will be extremely difficult to repair any damage once installed in the detector. In the testing process, the count rate in most modules showed was stable and consistent with cosmic ray rate over an approximately 500 V operating range between 5400 to 5900 V. The count in some modules, however, was shown to unexpectedly spike near the operation point. In general, the modules through which the gas first flows did not show this problem, but those further along the gas chain were much more likely to do so. The suggestion was that this spike was due to higher humidity in the modules furthest from the fresh, dry inflowing gas, and that the water molecules in more humid modules were adversely affecting the modules' performance. This project studied the effect of humidity in the modules, using a small capacitive humidity sensor (Honeywell). The sensor provided a humidity-dependent output voltage, as well as a temperature measurement from a thermistor. A full-size hygrometer (Panametrics) was used for testing and calibrating the Honeywell sensors. First the relative humidity of the air was measured. For the full calibration, a special gas-mixing setup was used, where relative humidity of the LST gas mixture could be ...
Date: December 15, 2005
Creator: Lang, M.I.; /MIT; Convery, M.; /SLAC; Menges, W. & /Queen Mary, U. of London
Partner: UNT Libraries Government Documents Department

Renormalization Scale-Fixing for Complex Scattering Amplitudes

Description: We show how to fix the renormalization scale for hard-scattering exclusive processes such as deeply virtual meson electroproduction by applying the BLM prescription to the imaginary part of the scattering amplitude and employing a fixed-t dispersion relation to obtain the scale-fixed real part. In this way we resolve the ambiguity in BLM renormalization scale-setting for complex scattering amplitudes. We illustrate this by computing the H generalized parton distribution at leading twist in an analytic quark-diquark model for the parton-proton scattering amplitude which can incorporate Regge exchange contributions characteristic of the deep inelastic structure functions.
Date: December 21, 2005
Creator: Brodsky, Stanley J.; /SLAC; Llanes-Estrada, Felipe J. & U., /Madrid
Partner: UNT Libraries Government Documents Department

Study the Z-Plane Strip Capacitance

Description: The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.
Date: December 15, 2005
Creator: Parikh, H.; /Illinois U., Urbana; Swain, S. & /SLAC
Partner: UNT Libraries Government Documents Department

Simulation Studies on the Vertical Emittance Growth in the ATF Extraction Beamline

Description: Significant dependence of the vertical emittance growth on the beam intensity was experimentally observed at the ATF/KEK extraction beamline. This technical note describes the simulations of possible vertical emittance growth sources, particularly in the extraction channel, where the magnets are shared by both the ATF extraction beamline and its damping ring. The vertical emittance growth is observed in the simulations by changing the beam orbit in the extraction channel even with all optics corrections. The possible reasons for the experimentally observed dependence of the vertical emittance growth on the beam intensity are discussed. An experiment to measure the emittance vs beam orbit at the existing ATF extraction beamline is proposed.
Date: December 18, 2007
Creator: Zhou, F.; Amann, J.; Selestiky, S.; Seryi, A.; Spencer, C.; Woodley, M. et al.
Partner: UNT Libraries Government Documents Department

Monitoring SLAC High Performance UNIX Computing Systems

Description: Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.
Date: December 15, 2005
Creator: Lettsome, Annette K. & /SLAC, /Bethune-Cookman Coll.
Partner: UNT Libraries Government Documents Department

Reheating Metastable O'Raifeartaigh Models

Description: In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.
Date: December 13, 2006
Creator: Craig, Nathaniel J.; /SLAC /Stanford U., ITP; Fox, Patrick J.; /LBL, Berkeley; Wacker, Jay G. & /SLAC /Stanford U., ITP
Partner: UNT Libraries Government Documents Department

SCET Sum Rules for B to P and B to V Transition Form Factors

Description: We investigate sum rules for heavy-to-light transition form factors at large recoil derived from correlation functions with interpolating currents for light pseudoscalar or vector fields in soft-collinear effective theory (SCET). We consider both, factorizable and nonfactorizable contributions at leading power in the {Lambda}/m{sub b} expansion and to first order in the strong coupling constant {alpha}{sub s}, neglecting contributions from 3-particle distribution amplitudes in the B-meson. We pay particular attention to various sources of parametric and systematic uncertainties. We also discuss certain form factor ratios where part of the hadronic uncertainties related to the B-meson distribution amplitude and to logarithmically enhanced {alpha}{sub s} corrections cancel.
Date: December 18, 2007
Creator: De Fazio, Fulvia; /INFN, Bari; Feldmann, Thorsten; U., /Siegen; Hurth, Tobias & /SLAC, /CERN
Partner: UNT Libraries Government Documents Department

A Simple Harmonic Universe

Description: We explore simple but novel bouncing solutions of general relativity that avoid singularities. These solutions require curvature k = +1, and are supported by a negative cosmological term and matter with -1 < w < -1 = 3. In the case of moderate bounces (where the ratio of the maximal scale factor a{sub +} to the minimal scale factor a{sub -} is {Omicron}(1)), the solutions are shown to be classically stable and cycle through an infinite set of bounces. For more extreme cases with large a{sub +} = a{sub -}, the solutions can still oscillate many times before classical instabilities take them out of the regime of validity of our approximations. In this regime, quantum particle production also leads eventually to a departure from the realm of validity of semiclassical general relativity, likely yielding a singular crunch. We briefly discuss possible applications of these models to realistic cosmology.
Date: December 14, 2011
Creator: Graham, Peter W.; /Stanford U., ITP; Horn, Bart; Kachru, Shamit; /Stanford U., ITP /SLAC; Rajendran, Surjeet et al.
Partner: UNT Libraries Government Documents Department

Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

Description: Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with the theory. Chapter 5 discusses imaging of isolated vortices as a ...
Date: December 2, 2005
Creator: Guikema, Janice Wynn & /SLAC, SSRL
Partner: UNT Libraries Government Documents Department

GUTs on Compact Type IIB Orientifolds

Description: We systematically analyze globally consistent SU(5) GUT models on intersecting D7-branes in genuine Calabi-Yau orientifolds with O3- and O7-planes. Beyond the well-known tadpole and K-theory cancellation conditions there exist a number of additional subtle but quite restrictive constraints. For the realization of SU(5) GUTs with gauge symmetry breaking via U(1)Y flux we present two classes of suitable Calabi-Yau manifolds defined via del Pezzo transitions of the elliptically fibred hypersurface P{sub 1,1,1,6,9}[18] and of the Quintic P{sub 1,1,1,1,1}[5], respectively. To define an orientifold projection we classify all involutions on del Pezzo surfaces. We work out the model building prospects of these geometries and present five globally consistent string GUT models in detail, including a 3-generation SU(5) model with no exotics whatsoever. We also realize other phenomenological features such as the 10 10 5{sub H} Yukawa coupling and comment on the possibility of moduli stabilization, where we find an entire new set of so-called swiss-cheese type Calabi-Yau manifolds. It is expected that both the general constrained structure and the concrete models lift to F-theory vacua on compact Calabi-Yau fourfolds.
Date: December 1, 2008
Creator: Blumenhagen, Ralph; /Munich, Max Planck Inst.; Braun, Volker; Inst., /Dublin; Grimm, Thomas W.; U., /Bonn et al.
Partner: UNT Libraries Government Documents Department

Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

Description: The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle ...
Date: December 15, 2005
Creator: Kraus, R.; /Nevada U., Reno; Fisher, A.S. & /SLAC
Partner: UNT Libraries Government Documents Department