30 Matching Results

Search Results

Advanced search parameters have been applied.

Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Description: Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance.
Date: December 2007
Creator: Pati, Nishikanta
Partner: UNT Libraries

Predictive Modeling for Persuasive Ambient Technology

Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Date: August 2015
Creator: Powell, Jason W.
Partner: UNT Libraries

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

Description: The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2016
Creator: Koppikar, Samir Dilip
Partner: UNT Libraries

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner
Partner: UNT Libraries

Urban surface characterization using LiDAR and aerial imagery.

Description: Many calamities in history like hurricanes, tornado and flooding are proof to the large scale impact they cause to the life and economy. Computer simulation and GIS helps in modeling a real world scenario, which assists in evacuation planning, damage assessment, assistance and reconstruction. For achieving computer simulation and modeling there is a need for accurate classification of ground objects. One of the most significant aspects of this research is that it achieves improved classification for regions within which light detection and ranging (LiDAR) has low spatial resolution. This thesis describes a method for accurate classification of bare ground, water body, roads, vegetation, and structures using LiDAR data and aerial Infrared imagery. The most basic step for any terrain modeling application is filtering which is classification of ground and non-ground points. We present an integrated systematic method that makes classification of terrain and non-terrain points effective. Our filtering method uses the geometric feature of the triangle meshes created from LiDAR samples and calculate the confidence for every point. Geometric homogenous blocks and confidence are derived from TIN model and gridded LiDAR samples. The results from two representations are used in a classifier to determine if the block belongs ground or otherwise. Another important step is detection of water body, which is based on the LiDAR sample density of the region. Objects like tress and bare ground are characterized by the geometric features present in the LiDAR and the color features in the infrared imagery. These features are fed into a SVM classifier which detects bare-ground in the given region. Similarly trees are extracted using another trained SVM classifier. Once we obtain bare-grounds and trees, roads are extracted by removing the bare grounds. Structures are identified by the properties of non-ground segments. Experiments were conducted using LiDAR samples and Infrared imagery ...
Date: December 2009
Creator: Sarma, Vaibhav
Partner: UNT Libraries