3 Matching Results

Search Results

Advanced search parameters have been applied.

The SuperCDMS Experiment

Description: Modest improvements in the level and/or discrimination of backgrounds are needed to keep backgrounds negligible during the three phases of SuperCDMS. By developing production designs that require only modest testing, detector production rates may be improved sufficiently to allow an exposure of 500 ton d within a reasonable time and budget. Overall, the improvement estimates described above are conservative. Previous development efforts have shown that some areas prove easier and provide larger factors while others prove more difficult. The conservative estimates together with the broad approach reduce the risk and give us confidence that we will succeed, providing the surest way to probe to WIMP-nucleon cross sections of 10{sup -46} cm{sup 2}.
Date: February 1, 2005
Creator: Schnee, Richard W.; Akerib, D. S.; Attisha, M. J.; Bailey, C. N.; Baudis, L.; Bauer, Daniel A. et al.
Partner: UNT Libraries Government Documents Department

Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

Description: The top quark produced through the electroweak channel provides a direct measurement of the V{sub tb} element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W{prime}. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb{sup -1} of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.30{sub -1.20}{sup +0.98} pb. The measured result corresponds to a 4.9{sigma} Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 {+-} 0.88 pb with a significance of 5.0{sigma}, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |V{sub tb}| < 1, the 95% confidence level (C.L.) lower limit is |V{sub tb}| > 0.78. Additionally, a search is made for the production of W{prime} using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W{prime} with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W{prime} {yields} t{bar b}, the lower ...
Date: February 1, 2010
Creator: Pangilinan, Monica & U., /Brown
Partner: UNT Libraries Government Documents Department