844 Matching Results

Search Results

Advanced search parameters have been applied.

2008 Solar Technologies Market Report

Description: The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold ...
Date: January 1, 2010
Creator: Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T. et al.
Partner: UNT Libraries Government Documents Department

2008 WIND TECHNOLOGIES MARKET REPORT

Description: The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the ...
Date: July 15, 2009
Creator: Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K. et al.
Partner: UNT Libraries Government Documents Department

2010 Wind Technologies Market Report

Description: The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.
Date: June 27, 2011
Creator: Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naïm; Hoen, Ben; Mills, Andrew et al.
Partner: UNT Libraries Government Documents Department

Accelerated Testing Validation

Description: The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.
Date: July 1, 2011
Creator: Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok et al.
Partner: UNT Libraries Government Documents Department

Accelerating the Payment of PACE Assessments By Mark Zimring and Merrian Fulle

Description: The 'acceleration' of land-secured assessments allows municipalities to declare the entire value (not just the late payments) of a property owner's outstanding balance payable if a default occurs. State laws vary on whether acceleration is required, permitted, or prohibited. Acceleration can be attractive to bond investors because it strips out non-performing assessments, and may avoid delays in debt service payments to investors. The risk that non-acceleration will negatively impact bond investors is a particular issue in states without a process for rapidly resolving defaults. However, acceleration may also increase the risk to mortgage holders, as the full amount of the outstanding assessment becomes due and traditionally has priority over other lien holders. Acceleration also places a greater burden on the property owner.
Date: May 4, 2010
Creator: Zimring, Mark & Fuller, Merrian
Partner: UNT Libraries Government Documents Department

Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL

Description: We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.
Date: September 6, 2011
Creator: Zuo, Wangda; McNeil, Andrew; Wetter, Michael & Lee, Eleanor
Partner: UNT Libraries Government Documents Department

ACCURACY OF CO2 SENSORS

Description: Are the carbon dioxide (CO2) sensors in your demand controlled ventilation systems sufficiently accurate? The data from these sensors are used to automatically modulate minimum rates of outdoor air ventilation. The goal is to keep ventilation rates at or above design requirements while adjusting the ventilation rate with changes in occupancy in order to save energy. Studies of energy savings from demand controlled ventilation and of the relationship of indoor CO2 concentrations with health and work performance provide a strong rationale for use of indoor CO2 data to control minimum ventilation rates1-7. However, this strategy will only be effective if, in practice, the CO2 sensors have a reasonable accuracy. The objective of this study was; therefore, to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. This article provides a summary of study methods and findings ? additional details are available in a paper in the proceedings of the ASHRAE IAQ?2007 Conference8.
Date: October 1, 2008
Creator: Fisk, William J.; Faulkner, David & Sullivan, Douglas P.
Partner: UNT Libraries Government Documents Department

Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

Description: An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.
Date: April 19, 2010
Creator: Rubinstein, Francis & Enscoe, Abby
Partner: UNT Libraries Government Documents Department

Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

Description: This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.
Date: May 29, 2009
Creator: McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane & Egan, Christine
Partner: UNT Libraries Government Documents Department

Action-Oriented Benchmarking: Concepts and Tools

Description: Most energy benchmarking tools provide static feedback on how one building compares to a larger set of loosely similar buildings, without providing information at the end-use level or on what can be done to reduce consumption, cost, or emissions. In this article--Part 1 of a two-part series--we describe an 'action-oriented benchmarking' approach, which extends whole-building energy benchmarking to include analysis of system and component energy use metrics and features. Action-oriented benchmarking thereby allows users to generate more meaningful metrics and to identify, screen and prioritize potential efficiency improvements. This opportunity assessment process can then be used to inform and optimize a full-scale audit or commissioning process. We introduce a new web-based action-oriented benchmarking system and associated software tool-EnergyIQ. The benchmarking methods, visualizations, and user interface design are informed by an end-user needs assessment survey and best-practice guidelines from ASHRAE.
Date: February 13, 2008
Creator: Commission, California Energy; Mathew, Paul; Mills, Evan; Mathew, Paul; Piette, Mary Ann; Bourassa, Norman et al.
Partner: UNT Libraries Government Documents Department

Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California

Description: The 2006 Commercial End Use Survey (CEUS) database developed by the California Energy Commission is a far richer source of energy end-use data for non-residential buildings than has previously been available and opens the possibility of creating new and more powerful energy benchmarking processes and tools. In this article--Part 2 of a two-part series--we describe the methodology and selected results from an action-oriented benchmarking approach using the new CEUS database. This approach goes beyond whole-building energy benchmarking to more advanced end-use and component-level benchmarking that enables users to identify and prioritize specific energy efficiency opportunities - an improvement on benchmarking tools typically in use today.
Date: February 1, 2008
Creator: Mathew, Paul; Mills, Evan; Bourassa, Norman & Brook, Martha
Partner: UNT Libraries Government Documents Department

The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

Description: Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example ...
Date: August 25, 2010
Creator: Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian et al.
Partner: UNT Libraries Government Documents Department

Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

Description: The Distributed Energy Resources Customer Adoption Model is used to estimate the value an Oakland nursing home, a Riverside high school, and a Sunnyvale data center would need to put on higher electricity service reliability for them to adopt a Consortium for Electric Reliability Technology Solutions Microgrid (CM) based on economics alone. A fraction of each building's load is deemed critical based on its mission, and the added cost of CM capability to meet it added to on-site generation options. The three sites are analyzed with various resources available as microgrid components. Results show that the value placed on higher reliability often does not have to be significant for CM to appear attractive, about 25 $/kWcdota and up, but the carbon footprint consequences are mixed because storage is often used to shift cheaper off-peak electricity to use during afternoon hours in competition with the solar sources.
Date: May 7, 2009
Creator: Marnay, Chris; Lai, Judy; Stadler, Michael & Siddiqui, Afzal
Partner: UNT Libraries Government Documents Department

Advanced Benchmarking for Complex Building Types: Laboratories as an Exemplar

Description: Complex buildings such as laboratories, data centers and cleanrooms present particular challenges for energy benchmarking because it is difficult to normalize special requirements such as health and safety in laboratories and reliability (i.e., system redundancy to maintain uptime) in data centers which significantly impact energy use. For example, air change requirements vary widely based on the type of work being performed in each laboratory space. We present methods and tools for energy benchmarking in laboratories, as an exemplar of a complex building type. First, we address whole building energy metrics and normalization parameters. We present empirical methods based on simple data filtering as well as multivariate regression analysis on the Labs21 database. The regression analysis showed lab type, lab-area ratio and occupancy hours to be significant variables. Yet the dataset did not allow analysis of factors such as plug loads and air change rates, both of which are critical to lab energy use. The simulation-based method uses an EnergyPlus model to generate a benchmark energy intensity normalized for a wider range of parameters. We suggest that both these methods have complementary strengths and limitations. Second, we present"action-oriented" benchmarking, which extends whole-building benchmarking by utilizing system-level features and metrics such as airflow W/cfm to quickly identify a list of potential efficiency actions which can then be used as the basis for a more detailed audit. While action-oriented benchmarking is not an"audit in a box" and is not intended to provide the same degree of accuracy afforded by an energy audit, we demonstrate how it can be used to focus and prioritize audit activity and track performance at the system level. We conclude with key principles that are more broadly applicable to other complex building types.
Date: August 1, 2010
Creator: Mathew, Paul A.; Clear, Robert; Kircher, Kevin; Webster, Tom; Lee, Kwang Ho & Hoyt, Tyler
Partner: UNT Libraries Government Documents Department

Advanced Coal Wind Hybrid: Economic Analysis

Description: Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In ...
Date: November 28, 2008
Creator: Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter et al.
Partner: UNT Libraries Government Documents Department

Aerosol climate effects and air quality impacts from 1980 to 2030

Description: We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are ...
Date: November 26, 2007
Creator: Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim et al.
Partner: UNT Libraries Government Documents Department

Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

Description: Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs ...
Date: March 12, 2010
Creator: Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E. et al.
Partner: UNT Libraries Government Documents Department

Air Corrosivity in U.S. Outdoor-Air-Cooled Data Centers is Similar to That in Conventional Data Centers

Description: There is a concern that environmental-contamination caused corrosion may negatively affect Information Technology (IT) equipment reliability. Nineteen data centers in the United States and two in India were evaluated using Corrosion Classification Coupons (CCC) to assess environmental air quality as it may relate IT equipment reliability. The data centers were of two basic types: closed and outside-air cooled. A closed data center provides cool air to the IT equipment using air conditioning in which only a small percent age of the recirculation air is make-up air continuously supplied from outside to meet human health requirements. An outside-air cooled data center uses outside air directly as the primary source for IT equipment cooling. Corrosion measuring coupons containing copper and silver metal strips were placed in both closed and outside-air cooled data centers. The coupons were placed at each data center (closed and outside-air cooled types) with the location categorized into three groups: (1) Outside - coupons sheltered, located near or at the supply air inlet, but located before any filtering, (2) Supply - starting just after initial air filtering continuing inside the plenums and ducts feeding the data center rooms, and (3) Inside located inside the data center rooms near the IT equipment. Each coupon was exposed for thirty days and then sent to a laboratory for a corrosion rate measurement analysis. The goal of this research was to investigate whether gaseous contamination is a concern for U.S. data center operators as it relates to the reliability of IT equipment. More specifically, should there be an increased concern if outside air for IT equipment cooling is used To begin to answer this question limited exploratory measurements of corrosion rates in operating data centers in various locations were undertaken. This study sought to answer the following questions: (1) What is the precision ...
Date: July 17, 2011
Creator: Coles, Henry C.; Han, Taewon; Price, Phillip N.; Gadgil, Ashok J. & Tschudi, William F.
Partner: UNT Libraries Government Documents Department

Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

Description: The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).
Date: May 1, 2009
Creator: Petithuguenin, T.D.P. & Sherman, M.H.
Partner: UNT Libraries Government Documents Department

AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

Description: The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.
Date: July 1, 2011
Creator: Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa & Singer, Brett
Partner: UNT Libraries Government Documents Department

Aircraft Cabin Environmental Quality Sensors

Description: The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.
Date: May 6, 2010
Creator: Gundel, Lara; Kirchstetter, Thomas; Spears, Michael & Sullivan, Douglas
Partner: UNT Libraries Government Documents Department

Airflow Simulations around OA Intake Louver with Electronic Velocity Sensors

Description: It is important to control outdoor airflow rates into HVAC systems in terms of energy conservation and healthy indoor environment. Technologies are being developed to measure outdoor air (OA) flow rates through OA intake louvers on a real time basis. The purpose of this paper is to investigate the airflow characteristics through an OA intake louver numerically in order to provide suggestions for sensor installations. Airflow patterns are simulated with and without electronic air velocity sensors within cylindrical probes installed between louver blades or at the downstream face of the louver. Numerical results show quite good agreements with experimental data, and provide insights regarding measurement system design. The simulations indicate that velocity profiles are more spatially uniform at the louver outlet relative to between louver blades, that pressure drops imposed by the sensor bars are smaller with sensor bars at the louver outlet, and that placement of the sensor bars between louver blades substantially increases air velocities inside the louver. These findings suggest there is an advantage to placing the sensor bars at the louver outlet face.
Date: April 1, 2009
Creator: Han, Hwataik; Sullivan, Douglas P. & Fisk, William J.
Partner: UNT Libraries Government Documents Department

ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

Description: Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl ...
Date: May 4, 2008
Creator: Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P. & Apte, Michael G.
Partner: UNT Libraries Government Documents Department