Search Results

Advanced search parameters have been applied.
open access

Modeling of pulsating heat pipes.

Description: This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and … more
Date: August 1, 2009
Creator: Givler, Richard C. & Martinez, Mario J.
Partner: UNT Libraries Government Documents Department
open access

Thermal and Fluid Flow Brazing Simulations

Description: The thermal response of fixtured parts in a batch-type brazing furnace can require numerous, time-consuming development runs before an acceptable furnace schedule or joint design is established. Powerful computational simulation tools are being developed to minimize the required number of verification experiments, improve furnace throughput, and increase product yields. Typical furnace simulations are based on thermal, fluid flow, and structural codes that incorporate the fundamental physics of… more
Date: December 15, 1999
Creator: Hosking, Floyd Michael; Gianolakis, Steven E.; Givler, Richard C. & Schunk, P. Randall
Partner: UNT Libraries Government Documents Department
open access

Theory and modeling of active brazing.

Description: Active brazes have been used for many years to produce bonds between metal and ceramic objects. By including a relatively small of a reactive additive to the braze one seeks to improve the wetting and spreading behavior of the braze. The additive modifies the substrate, either by a chemical surface reaction or possibly by alloying. By its nature, the joining process with active brazes is a complex nonequilibrium non-steady state process that couples chemical reaction, reactant and product diffu… more
Date: September 1, 2013
Creator: van Swol, Frank B.; Miller, James Edward; Lechman, Jeremy B. & Givler, Richard C.
Partner: UNT Libraries Government Documents Department
open access

Efficient Runner Networks for Investment Castings

Description: We present a computational method that finds an efficient runner network for an investment casting, once the gate locations have been established. The method seeks to minimize a cost function that is based on total network volume. The runner segments are restricted to lie in the space not occupied by the part itself. The collection of algorithms has been coded in C and runner designs have been computed for several real parts, demonstrating substantial reductions in rigging volume.
Date: July 18, 2000
Creator: GIVLER,RICHARD C. & SAYLORS,DAVID B.
Partner: UNT Libraries Government Documents Department
open access

Meso-scale controlled motion for a microfluidic drop ejector.

Description: The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector pac… more
Date: December 1, 2004
Creator: Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy; Czaplewski, David A.; Luck, David L.; Braithwaite, Mark J. et al.
Partner: UNT Libraries Government Documents Department
open access

Electrostatic microvalves utilizing conductive nanoparticles for improved speed, lower power, and higher force actuation.

Description: We have designed and built electrostatically actuated microvalves compatible with integration into a PDMS based microfluidic system. The key innovation for electrostatic actuation was the incorporation of carbon nanotubes into the PDMS valve membrane, allowing for electrostatic charging of the PDMS layer and subsequent discharging, while still allowing for significant distention of the valveseat for low voltage control of the system. Nanoparticles were applied to semi-cured PDMS using a stamp t… more
Date: September 1, 2009
Creator: Ten Eyck, Gregory A.; Branson, Eric D.; Kenis, Paul J. A. (University of Illinois, Champaign Urbana); Desai, Amit (University of Illinois, Champaign Urbana); Schudel, Ben (University of Illinois, Champaign Urbana); Givler, Richard C. et al.
Partner: UNT Libraries Government Documents Department
open access

Wetting and free surface flow modeling for potting and encapsulation.

Description: As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorit… more
Date: June 1, 2007
Creator: Brooks, Carlton, F.; Brooks, Michael J.; Graham, Alan Lyman; Noble, David Frederick; Notz, Patrick K.; Hopkins, Matthew Morgan et al.
Partner: UNT Libraries Government Documents Department
Back to Top of Screen