1,648 Matching Results

Search Results

Advanced search parameters have been applied.

Z-Pinch Driven Isentropic Compression for Inertial Fusion

Description: The achievement of high gain with inertial fusion requires the compression of hydrogen isotopes to high density and temperatures. High densities can be achieved most efficiently by isentropic compression. This requires relatively slow pressure pulses on the order of 10-20 nanoseconds; however, the pressure profile must have the appropriate time. We present 1-D numerical simulations that indicate such a pressure profile can be generated by using pulsed power driven z pinches. Although high compression is calculated, the initial temperature is too low for ignition. Ignition could be achieved by heating a small portion of this compressed fuel with a short (-10 ps) high power laser pulse as previously described. Our 1-D calculations indicate that the existing Z-accelerator could provide the driving current (-20 MA) necessary to compress fuel to roughly 1500 times solid density. At this density the required laser energy is approximately 10 kJ. Multidimensional effects such as the Rayleigh-Taylor were not addressed in this brief numerical study. These effects will undoubtedly lower fuel compression for a given chive current. Therefore it is necessary to perform z-pinch driven compression experiments. Finally, we present preliminary experimental data from the Z-accelerator indicating that current can be efficiently delivered to appropriately small loads (- 5 mm radius) and that VISAR can be used measure high pressure during isentropic compression.
Date: February 1, 1999
Creator: Asay, J.R.; Hall, C.A.; Holland, K.G.; Slutz, S.A.; Spielman, R.B. & Stygar, W.A.
Partner: UNT Libraries Government Documents Department

Electron Bunch Length Diagnostic With Coherent Smith-Purcell Radiation

Description: The authors have designed a new technique for measuring subpicosecond electron bunch lengths using coherent Smith-Purcell radiation. This new diagnostic technique involves passing the electron beam in close proximity of a grating with a period comparable to the electron bunch length. The emitted Smith-Purcell radiation will have a coherent component whose angular position and distribution are directly related to the electron bunch length and longitudinal profile, respectively. This new diagnostic technique is inherently simple, inexpensive and non-intercepting. The authors show that the new technique is also scaleable to femtosecond regime.
Date: May 12, 1997
Creator: Nguyen, D.C.
Partner: UNT Libraries Government Documents Department

The mean evolution and variability of the Asian summer monsoon: comparison of ECMWF and NCEP/NCAR reanalyses

Description: The behavior of the Asian Summer Monsoon is compared using the European Centre for Medium Range Weather Forecasts Reanalysis (ERA) and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay et al. 1996). The goals of this paper are to identify common features between the reanalyses, to assess their robustness for model validation, and especially to use reanalyses to develop their understanding of the mean evolution of the Asian Summer Monsoon and the characteristics of its interannual and intraseasonal variability (Annamalai et al. 1999).
Date: April 21, 1999
Creator: Annamalai, H.; Hodges, K.; Slingo, J.M. & Sperber, K.R.
Partner: UNT Libraries Government Documents Department

2003 Laser Diagnostic in Combustion Conference

Description: The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.
Date: September 10, 2004
Creator: Allen, Mark G.
Partner: UNT Libraries Government Documents Department

Experimental Studies of Electrons in a Heavy-Ion Beam

Description: Electron cloud effects, ECEs, are normally a problem only in ring accelerators. However, heavy-ion induction linacs for inertial fusion energy have an economic incentive to fit beam tubes tightly to intense beams. This places them at risk from electron clouds produced by emission of electrons and gas from walls. We have measured electron and gas emission from 1 MeV K{sup +} impact on surfaces near grazing incidence on the High-Current Experiment (HCX) at LBNL. Electron emission coefficients reach *values of 130, whereas gas desorption coefficients are near 10{sup 4}. Mitigation techniques are being studied: A bead-blasted rough surface reduces electron emission by a factor of 10 and gas desorption by a factor of 2. Diagnostics are installed on HCX, between and within quadrupole magnets, to measure the beam halo loss, net charge and expelled ions, from which we infer gas density, electron trapping, and the effects of mitigation techniques. Here we discuss a new diagnostic technique that measures gas pressure and electron ionization rates within quadrupole magnets during the beam transit.
Date: June 23, 2004
Creator: Molvik, A W; Seidl, P A; Bieniosek, F M; Cohen, R H; Faltens, A; Friedman, A et al.
Partner: UNT Libraries Government Documents Department


Description: The purpose of the present effort was to demonstrate 'on the fly' temperature measurement of railgun armatures on a bench top railgun. The effort builds on the previous test that utilized a portable unit with armature speeds ranging from 50 to 90 m/s. The tests described here involved higher speeds, ranging from 300 to 500 m/s. The method to accomplish the measurement involves pulsed laser illumination of a phosphor-coated armature. The duration of the ensuing fluorescence indicates temperature. The measured temperatures, obtained both inside the muzzle and outside in free flight, ranged between 80 to 110 C. The required pulsed fluorescence was made possible by successfully sensing the position of the armature while traveling within the laser illumination and fluorescence sensing fields-of-view. A high-speed camera also captured images of the moving armatures after exiting the railgun. These images sometimes included the fluorescing region of the phosphor coating.
Date: December 1, 2005
Creator: Allison, Stephen W; Cates, Michael R; Goedeke, Shawn; Crawford, M. T.; Ferraro, S. B.; Surls, D. et al.
Partner: UNT Libraries Government Documents Department

Interwell Connectivity and Diagnosis Using Correlation of Production and Injection Rate Data in Hydrocarbon Production

Description: This report details progress and results on inferring interwell communication from well rate fluctuations. Starting with the procedure of Albertoni and Lake (2003) as a foundation, the goal of the project was to develop further procedures to infer reservoir properties through weights derived from correlations between injection and production rates. A modified method, described in Yousef and others (2006a,b), and herein referred to as the 'capacitance model', is the primary product of this research project. The capacitance model (CM) produces two quantities, {lambda} and {tau}, for each injector-producer well pair. For the CM, we have focused on the following items: (1) Methods to estimate {lambda} and {tau} from simulated and field well rates. The original method uses both non-linear and linear regression and lacks the ability to include constraints on {lambda} and {tau}. The revised method uses only non-linear regression, permitting constraints to be included as well as accelerating the solution so that problems with large numbers of wells are more tractable. (2) Approaches to integrate {lambda} and {tau} to improve connectivity evaluations. Interpretations have been developed using Lorenz-style and log-log plots to assess heterogeneity. Testing shows the interpretations can identify whether interwell connectivity is controlled by flow through fractures, high-permeability layers, or due to partial completion of wells. Applications to the South Wasson and North Buck Draw Fields show promising results. (3) Optimization of waterflood injection rates using the CM and a power law relationship for watercut to maximize economic return. Tests using simulated data and a range of oil prices show the approach is working. (4) Investigation of methods to increase the robustness of {lambda} and {tau} estimates. Human interventions, such as workovers, also cause rate fluctuations and can be misinterpreted by the model if bottom hole pressure data are not available. A revised method, called the 'segmented ...
Date: March 31, 2007
Creator: Jensen, Jerry L.; Lake, Larry W.; Al-Yousef, Ali; Weber, Dan; Liang, Ximing; Edgar, T.F. et al.
Partner: UNT Libraries Government Documents Department

Vertical cavity surface-emitting laser scanning cytometer for high speed analysis of cells

Description: We have constructed a new semiconductor laser device that may be useful in high speed characterization of cell morphology for diagnosis of disease. This laser device has critical advantages over conventional cell fluorescence detection methods since it provides intense, monochromatic, low-divergence fight signals that are emitted from lasing modes confined by a cell. Further, the device integrates biological structures with semiconductor materials at the wafer level to reduce device size and simplify cell preparation. In this paper we discuss operational characteristics of the prototype cytometer and present preliminary data for blood cells and dielectric spheres.
Date: December 31, 1995
Creator: Gourley, P.L.; McDonald, A.E. & Gourley, M.F.
Partner: UNT Libraries Government Documents Department

Characterization of beam dynamics in the APS injector rings using time-resolved imaging techniques

Description: Images taken with streak cameras and gated intensified cameras with both time (longitudinal) and spatial (transverse) resolution reveal a wealth of information about circular accelerators. The authors illustrate a novel technique by a sequence of dual-sweep streak camera images taken at a high dispersion location in the booster synchrotron, where the horizontal coordinate is strongly correlated with the particle energy and the {open_quotes}top-view{close_quotes} of the beam gives a good approximation to the particle density distribution in the longitudinal phase space. A sequence of top-view images taken fight after injection clearly shows the beam dynamics in the phase space. We report another example from the positron accumulator ring for the characterization of its beam compression bunching with the 12th harmonic rf.
Date: June 1, 1997
Creator: Yang, B.X.; Lumpkin, A.H. & Borland, M.
Partner: UNT Libraries Government Documents Department

Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

Description: Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.
Date: November 1998
Creator: Crist, C. E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J. et al.
Partner: UNT Libraries Government Documents Department

Development of Improved Oil Field Waste Injection Disposal Techniques

Description: The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.
Date: November 25, 2002
Creator: Technologies, Terralog
Partner: UNT Libraries Government Documents Department

Faraday Rotation Measurements on Z-Pinches Final Report

Description: The Campus Executive Program sponsored this research at Cornell University. The research was directed toward the implementation of laser-based diagnostics for wire-array Z-pinches. Under this contract we were able to carry out all the necessary preparations to setup the laser diagnostics to complement our x-ray backlighting measurements of the early phase of exploding wire z-pinch plasma formation.
Date: October 1, 1998
Creator: Greenley, J.B.
Partner: UNT Libraries Government Documents Department

Integration of electro-optical mechanical systems and medicine: Where are we and where can we go?

Description: Microfabricated chip technologies offer researchers novel types of analysis of human clinical samples. Current examples of such technology include DNA amplification and analysis,and fluorescent cell analysis by flow cytometry. Potential applications include the development of rapid techniques for examining large numbers of cells in tissue or blood. This paper will outline criteria that successful devices must satisfy.
Date: March 1, 1997
Creator: Gourley, M.F. & Gourley, P.L.
Partner: UNT Libraries Government Documents Department