443 Matching Results

Search Results

Advanced search parameters have been applied.

Progress on Development of the New FDIRC PID Detector

Description: We present a progress status of a new concept of PID detector called FDIRC, intended to be used at the SuperB experiment, which requires {pi}/K separation up to a few GeV/c. The new photon camera is made of the solid fused-silica optics with a volume 25x smaller and speed increased by a factor of ten compared to the BaBar DIRC, and therefore will be much less sensitive to electromagnetic and neutron background
Date: August 3, 2012
Creator: Vavra, Jerry
Partner: UNT Libraries Government Documents Department

Report on 240Am(n,x) surrogate cross section test measurement

Description: The main goal of the test measurement was to determine the feasibility of the {sup 243}Am(p,t) reaction as a surrogate for {sup 240}Am(n,f). No data cross section data exists for neutron induced reactions on {sup 240}Am; the half-life of this isotope is only 2.1 days making direct measurements difficult, if not impossible. The 48-hour experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in August 2011. A description of the experiment and results is given. The beam energy was initially chosen to be 39 MeV in order to measure an equivalent neutron energy range from 0 to 20 MeV. However, the proton beam was not stopped in the farady cup and the beam was deposited in the surrounding shielding material. The shielding material was not conductive, and a beam current, needed for proper tuning of the beam as well as experimental monitoring, could not be read. If the {sup 240}Am(n,f) surrogate experiment is to be run at LBNL, simple modifications to the beam collection site will need to be made. The beam energy was reduced to 29 MeV, which was within an energy regime of prior experiments and tuning conditions at STARS/LIBERACE. At this energy, the beam current was successfully tuned and measured. At 29 MeV, data was collected with both the {sup 243}Am and {sup 238}U targets. An example particle identification plot is shown in Fig. 1. The triton-fission coincidence rate for the {sup 243}Am target and {sup 238}U target were measured. Coincidence rates of 0.0233(1) cps and 0.150(6) cps were observed for the {sup 243}Am and {sup 238}U targets, respectively. The difference in count rate is largely attributed to the available target material - the {sup 238}U target contains approximately 7 times more atoms than the {sup 243}Am. ...
Date: February 1, 2012
Creator: Ressler, J J; Burke, J T; Gostic, J; Bleuel, D; Escher, J E; Henderson, R A et al.
Partner: UNT Libraries Government Documents Department

Search for anomalous production of multiple leptons in association with $W$ and $Z$ bosons at CDF

Description: This paper presents a search for anomalous production of multiple low-energy leptons in association with a W or Z boson using events collected at the CDF experiment corresponding to 5.1 fb{sup -1} of integrated luminosity. This search is sensitive to a wide range of topologies with low-momentum leptons, including those with the leptons near one another. The observed rates of production of additional electrons and muons are compared with the standard model predictions. No indications of phenomena beyond the standard model are found. A 95% confidence level limit is presented on the production cross section for a benchmark model of supersymmetric hidden-valley Higgs production. Particle identification efficiencies are also provided to enable the calculation of limits on additional models.
Date: February 1, 2012
Creator: Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A. et al.
Partner: UNT Libraries Government Documents Department

The Capabilities of the upgraded MIPP experiment with respect to Hypernuclear physics

Description: We describe the state of analysis of the MIPP experiment, its plans to upgrade the experiment and the impact such an upgraded experiment will have on hypernuclear physics. The upgraded MIPP experiment is designed to measure the properties of strong interaction spectra form beams {pi}{sup {+-}}, K{sup {+-}}, and p{sup {+-}}, for momenta ranging from 1 GeV/c to 120 GeV/c. The layout of the apparatus in the data taken so far can be seen in Figure 1. The centerpiece of the experiment is the time projection chamber, which is followed by the time of flight counter, a multi-cell Cerenkov detector and the RICH detector. The TPC can identify charged particles with momenta less than 1 GeV/c using dE/dx, the time of flight will identify particles below approximately 2 GeV/c, the multi-cell Cerenkov detector is operational from 2.5 GeV/c to 14 GeV/c and the RICH detector can identify particles up to 120 GeVc. Following this is an EM and hadronic calorimeter capable of detecting forward going neutrons and photons. The experiment has been busy analyzing its data taken on various nuclei and beam conditions. The table 2 shows the data taken by MIPP I to date. We have almost complete acceptance in the forward hemisphere in the lab using the TPC. The reconstruction capabilities of the TPC can be seen in Figure 3. The particle identification capabilities of the TPC can be seen in Figure 4. The time of flight system provides further measurement of the particles with momenta less than 2 GeV/c. Figure 5 shows the time of flight data where a kaon peak is clearly visible.
Date: January 1, 2012
Creator: Raja, Rajendran
Partner: UNT Libraries Government Documents Department

Performance confirmation of the Belle II imaging Time Of Propogation (iTOP) prototype counter

Description: The Bell Detector at the KEKB asymmetric-energy e{sup +}e{sup -} collider performed extremely well, logging an integrated luminosity an order of magnitude higher than the design baseline. With this inverse attobarn of integrated luminosity, time-dependent CP-violation inn the 3rd generation beauty quarks was firmly established, and is now a precision measurement. Going beyond this to explore if the Kobayashi-Maskawa mechanism is the only contributor to quark-mixing, and to interrogate the flavor sector for non-standard model enhancements, requires a detector and accelerator capable of topping this world-record luminosity by more than an order of magnitude. The Belle II detector at the upgraded Super-KEKB accelerator has been designed to meet this highly ambitious goal of operating at a luminosity approaching 10{sup 36} cm{sup -2} s{sup -1}. Such higher event rates and backgrounds require upgrade of essentially all detector subsystems, as well as their readout. Comparing the Belle composite (threshold Aerogel + Time of Flight) particle identification (PID) system with the DIRC employed by BaBar, quartz radiator internal Cherenkov photon detection proved to have higher kaon efficiency and lower pion fake rates. However, because the detector structure and CsI calorimeter will be retained, an improved barrel PID must fit within a very narrow envelope, as indicated in Figure 1. To effectively utilize this space, a more compact detector concept based on the same quartz radiators, but primarily using photon arrival time was proposed. This Time Of Propagation (TOP) counter was studied in a number of earlier prototype tests. Key to the necessary 10's of picosecond single-photon timing has been the development of the so-called SL-10 Micro-Channel Plate Photo-Multiplier Tube (MCP-PMT), which has demonstrated sub-40 ps single photon Transit Time Spread TTS. Further simulation study of this detector concept indicated that a focusing mirror in the forward direction, as well as a modest image ...
Date: October 17, 2011
Creator: Schwartz, Alan; Liu, Yang; Belhorn, Matt; U., /Cincinnati; Browder, Thomas; Varner, Gary et al.
Partner: UNT Libraries Government Documents Department

Evidence for B+ --> tau+ nu_tau Decays using Hadronic B Tags

Description: We present a search for the decay B{sup +} --> {tau}{sup +} {nu}{sub {tau}} using 467.8 x 10{sup 6} B{anti B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the SLAC PEP-II B-Factory. We select a sample of events with on completely reconstructed B{sup -} in an hadronic decay mode (B{sup -} --> D{sup (*)0}X{sup -} and B{sup -} --> J/{psi} X{sup -}). We examine the rest of the event to search for a B{sup +} --> {tau}{sup +} {nu}{sub {tau}} decay. We identify the {tau}{sup +} lepton in the following modes: {tau}{sup +} --> e{sup +} {nu}{sub e}{anti {nu}}{sub {tau}}, {tau}{sup +} --> {mu}{sup +} {nu}{sub {mu}}{anti {nu}}{sub {tau}}, {tau}{sup +} --> {pi}{sup +}{anti {nu}}{sub {tau}} and {tau}{sup +} --> {rho}{anti {nu}}{sub {tau}}. We find an excess of events with respect to expected background, which excludes the null signal hypothesis at the level of 3.3 {sigma} and can be converted to a branching fraction central value of B(B{sup +} --> {tau}{sup +} {nu}{sub {tau}})= (1.80{sup + 0.57}{sub - 0.54}(stat.) {+-} 0.26 (syst.)) x 10{sup -4}.
Date: August 11, 2011
Creator: del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP et al.
Partner: UNT Libraries Government Documents Department

Investigation of novel decay B _____ ____(2S)____K at BaBar

Description: We investigate the undocumented B meson decay, B{sup +} {yields} {Psi}(2S){omega}K{sup +}. The data were collected with the BaBar detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collier operating at the {gamma}(4S) resonance, a center-of-mass energy of 10.58 GeV/c{sup 2}. The {gamma}(4S) resonance primarily decays to pairs of B-mesons. The BaBar collaboration at the PEP-II ring was located at the SLAC National Accelerator Laboratory and was designed to study the collisions of positrons and electrons. The e{sup -}e{sup +} pairs collide at asymmetric energies, resulting in a center of mass which is traveling at relativistic speeds. The resulting time dilation allows the decaying particles to travel large distances through the detector before undergoing their rapid decays, a process that occurs in the in the center of mass frame over extremely small distances. As they travel through silicon vertex trackers, a drift chamber, a Cerenkov radiation detector and finally an electromagnetic calorimeter, we measure the charge, energy, momentum, and particle identification in order to reconstruct the decays that have occurred. While all well understood mesons currently fall into the qq model, the quark model has no a priori exclusion of higher configuration states such as qqqq which has led experimentalists and theorists alike to seek evidence supporting the existence of such states. Currently, there are hundreds of known decay modes of the B mesons cataloged by the Particle Data Group, but collectively they only account for approximately 60% of the B branching fraction and it is possible that many more exist.
Date: June 22, 2011
Creator: Schalch, Jacob & /SLAC, /Oberlin Coll.
Partner: UNT Libraries Government Documents Department

Compact, Low-power and Precision Timing Photodetector Readout

Description: Photodetector readout for next generation high event rate particle identification and single-photon detection requires a digitizer capable of integrated recording of dense arrays of sensor elements with high analog bandwidth (precision timing) and large record depth, in a cost-effective, compact and low-power way. Simply stated, one cannot do better than having a high-fidelity 'oscilloscope on a chip' for every sensor channel. A firs version of the Buffered Large Analog Bandwidth (BLAB1) ASIC has been designed based upon the lessons learned from the development of the Large Analog Bandwidth Recorder and Digitizer with Ordered Readout (LABRADOR) ASIC. While this LABRADOR ASIC has been very successful and forms the readout basis of a generation of new, large-scale radio neutrino detectors, its limited sampling depth is a major drawback. To address this shortcoming, a prototype intended for photodetector readout has been designed and fabricated with 64k deep sampling at multi-GSa/s operation. An evaluation system has been constructed for instrumentation of Time-Of-Propagation (TOP) and focusing DIRC prototypes and test results will be reported.
Date: June 14, 2011
Creator: Varner, Gary S.; Ruckman, Larry L.; U., /Hawaii; Schwiening, Jochen; Vavra, Jaroslav & /SLAC
Partner: UNT Libraries Government Documents Department


Description: Cross-sections are presented for 58 GeV {pi}, K, and p on a wide range of nuclear targets. These cross-sections are essential for determining the neutrino flux in measurements of neutrino cross-sections and oscillations. The E907 Main Injector Particle Production (MIPP) experiment at Fermilab is a fixed target experiment for measuring hadronic particle production using primary 120 GeV/c protons and secondary {pi}, K, and p beams. The particle identification is made by dE/dx in a time projection chamber, and by time-of-flight, differential Cherenkov and ring imaging Cherenkov detectors, which together cover a wide range of momentum from 0.1 GeV/c up to 120 GeV/c. MIPP targets span the periodic table, from hydrogen to uranium, including beryllium and carbon. The MIPP has collected {approx} 0.26 x 10{sup 6} events of 58 GeV/c secondary particles produced by protons from the main injector striking a carbon target.
Date: December 1, 2009
Creator: Gunaydin, Yusuf Oguzhan & U., /Iowa
Partner: UNT Libraries Government Documents Department

Construction and Performance of the BaBar DIRC

Description: The new type of ring-imaging Cherenkov detector technology called DIRC (an acronym for Detection of Internally Reflected Cherenkov (Light)) has been used successfully for hadronic particle identification in the BABAR experiment at the B Factory (PEP-II) located at the SLAC National Accelerator Laboratory. This paper describes the R&D for and the construction of the DIRC radiator bars and the performance of the DIRC during more than eight years of B Factory operation.
Date: October 30, 2009
Creator: Schwiening, Jochen
Partner: UNT Libraries Government Documents Department

Time-dependent Dalitz-Plot Analysis of the Charmless Decay B^0 -> K^0S Pi Pi- at BABAR

Description: A time-dependent amplitude analysis of B{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} decays is performed in order to extract the CP violation parameters of f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} and direct CP asymmetries of K*{sup +}(892){pi}{sup -}. The results are obtained from the final BABAR data sample of (465 {+-} 5)10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC. The time dependent CP asymmetry for f{sub 0}(980)K{sub S}{sup 0} and {rho}{sup 0}(770)K{sub S}{sup 0} are measured to be S(f{sub 0}(980)K{sub S}{sup 0}) = -0.97 {+-} 0.09 {+-} 0.01 {+-} 0.01, and S({rho}{sup 0}(770)K{sub S}{sup 0}) = 0.67 {+-} 0.20 {+-} 0.06 {+-} 0.04, respectively. In decays to K*{sup +}(892){pi}{sup -} the direct CP asymmetry is found to be A{sub CP}(K*{sup {+-}}(892){pi}{sup {-+}}) = -0.18 {+-} 0.10 {+-} 0.04 {+-} 0.00. The relative phases between B{sup 0} {yields} K*{sup +}(892){pi}{sup -} and {bar B}{sup 0} {yields} K*{sup -}(892){pi}{sup +}, relevant for the extraction of the unitarity triangle angle {gamma}, is measured to be {Delta}{phi}(K*(892){pi}) = (34.9 {+-} 23.1 {+-} 7.5 {+-} 4.7){sup o}, where uncertainties are statistical, systematic and model-dependent, respectively. Fit fractions, direct CP asymmetries and the relative phases of different other resonant modes have also been measured. A new method for extracting longitudinal shower development information from longitudinally unsegmented calorimeters is also presented. This method has been implemented as a part of the BABAR final particle identification algorithm. A significant improvement in low momenta muon identification at BABAR is obtained.
Date: October 17, 2009
Creator: Ilic, J
Partner: UNT Libraries Government Documents Department

ArgoNeuT: A Liquid Argon Time Projection Chamber Test in the NuMI Beamline

Description: Liquid Argon Time Projection Chamber detectors are ideally suited for studying neutrino interactions and probing the parameters that characterize neutrino oscillations. The ability to drift ionization particles over long distances in purified argon and to trigger on abundant scintillation light allows for excellent particle identification and triggering capability. In these proceedings the details of the ArgoNeuT test-beam project will be presented after a brief introduction to the detector technique. ArgoNeuT is a 175 liter detector exposed to Fermilab's NuMI neutrino beamline. The first neutrino interactions observed in ArgoNeuT will be presented, along with discussion of the various physics analyses to be performed on this data sample.
Date: October 1, 2009
Creator: Soderberg, M.
Partner: UNT Libraries Government Documents Department

Liquid-Argon Time Projection Chambers in the U.S

Description: Liquid Argon Time Projection Chamber (LAr TPC) detectors are ideally suited for studying neutrino interactions and probing the parameters that characterize neutrino oscillations. The ability to drift ionization particles over long distances in purified argon and to trigger on abundant scintillation light allows for excellent particle identification and triggering capability. Recent U.S. based work in the development of LAr TPC technology for massive kiloton size detectors will be discussed in this talk, including details of the ArgoNeuT (Argon Neutrino Test) test-beam project, which is a 175 liter LAr TPC exposed to Fermilab's NuMI neutrino beamline.
Date: October 1, 2009
Creator: Soderberg, M.
Partner: UNT Libraries Government Documents Department

MicroBooNE: A New Liquid Argon Time Projection Chamber Experiment

Description: Liquid Argon Time Projection Chamber detectors are well suited to study neutrino interactions, and are an intriguing option for future massive detectors capable of measuring the parameters that characterize neutrino oscillations. These detectors combine fine-grained tracking with calorimetry, allowing for excellent imaging and particle identification ability. In this talk the details of the MicroBooNE experiment, a 175 ton LArTPC which will be exposed to Fermilab's Booster Neutrino Beamline starting in 2011, will be presented. The ability of MicroBooNE to differentiate electrons from photons gives the experiment unique capabilities in low energy neutrino interaction measurements.
Date: October 1, 2009
Creator: Soderberg, M.
Partner: UNT Libraries Government Documents Department

CCpi0 Event Reconstruction at MiniBooNE

Description: We describe the development of a fitter to reconstruct {nu}{sub {mu}} induced Charged-Current single {pi}{sup 0} (CC{pi}{sup 0}) events in an oil Cerenkov detector (CH{sub 2}). These events are fit using a generic muon and two photon extended track hypothesis from a common event vertex. The development of ring finding and particle identification are described. Comparisons between data and Monte Carlo are presented for a few kinematic distributions.
Date: September 1, 2009
Creator: Nelson, Robert H. & U., /Colorado
Partner: UNT Libraries Government Documents Department

Search for Lepton Flavour Violating Decays Tau -> l Ks with the BABAR Detector

Description: We present the search for the lepton flavour violating decay {tau} {yields} lK{sup 0}{sub s} with the BaBar experiment data. This process and many other lepton flavour violating {tau} decays, like {tau} {yields} {mu}{gamma} and {tau} {yields} lll, are one of the most promising channel to search for evidence of new physics. According to the Standard Model and the neutrino mixing parameters, branching fractions are estimated well below 10{sup -14}, but many models of new physics allow for branching fractions values close to the present experimental sensitivity. This analysis is based on a data sample of 469fb{sup -1} collected by BABAR detector at the PEP-II storage ring from 1999 to 2007, equivalent to 431 millions of {tau} pairs. the BABAR experiment, initially designed for studying CP violation in B mesons, has demonstrated to be one of the most suitable environments for studying {tau} decays. The tracking system, the calorimeter and the particle identification of BABAR, together with the knowledge of the {tau} initial energy, allow an extremely powerful rejection of background events that, for this analysis, is better than 10{sup -9}. Being {tau} {yields} lK{sup 0}{sub s} a decay mode without neutrinos, the signal {tau} decay can be fully reconstructed. Kinematical constraints are used in a fit that provides a decay tree reconstruction with a high resolution. For this analysis MC simulated events play a decisive role for estimating the signal efficiency and study the residual background. High statistics MC sample are produced simulating detector conditions for different periods of data collection, in order to reduce any discrepancies with the data. When discrepancies can not be removed, we perform studies to compute a correction factor or an estimation of systematic errors that need to be included in the final measurement. A significant improvement of the current result can be reached ...
Date: March 20, 2009
Creator: Cenci, Riccardo
Partner: UNT Libraries Government Documents Department

Status of MICE

Description: Muon ionization cooling is the only practical method for preparing high-brilliance beams needed for a neutrino factory or muon collider. The muon ionization cooling experiment (MICE) under development at the Rutherford Appleton Laboratory comprises a dedicated beamline to generate a range of input emittance and momentum, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. A first measurement of emittance is performed in the upstream magnetic spectrometer with a scintillating-fiber tracker. A cooling cell will then follow, alternating energy loss in liquid hydrogen with RF acceleration. A second spectrometer identical to the first and a particle identification system will measure the outgoing emittance. Plans for measurements of emittance and cooling are described.
Date: November 1, 2008
Creator: Bross, A. D. & Kaplan, D. M.
Partner: UNT Libraries Government Documents Department

Status of the Fast Focusing DIRC (fDIRC)

Description: We have built and successfully tested a novel particle identification detector concept, the Fast Focusing DIRC (fDIRC). The prototype's concept is based on the BaBar DIRC with several important improvements: (a) much faster pixelated photon detectors based on Burle MCP-PMTs and Hamamatsu MaPMTs, (b) a focusing mirror allowing a smaller photon detector, reducing the sensitivity to backgrounds in future applications, (c) electronics capable of measuring the single photon resolution to better than {sigma} {approx} 100-200ps. The fDIRC is the first RICH detector to successfully correct the chromatic error by timing.
Date: February 4, 2008
Creator: Benitez, J.; Leith, D.W.G.S.; Mazaheri, G.; Ratcliff, B.N.; Schwiening, J.; Vavra, J. et al.
Partner: UNT Libraries Government Documents Department

An improved Neutrino Oscillations Analysis of the MiniBooNE Data

Description: We calculate the exclusion region in the parameter space of {nu}{sub {mu}} {yields} {nu}{sub e} oscillations of the LSND type using a combined fit to the reconstructed energy distributions of neutrino candidate samples from the MiniBooNE data obtained with two different particle identification methods. The two {nu}{sub e} candidate samples are included together with a high statistics sample of {nu}{sub {mu}} events in the definition of a {chi}{sup 2} statistic which includes the correlations between the energy intervals of all three samples and handles the event overlap between the {nu}{sub e} samples. The {nu}{sub {mu}} sample is introduced to constrain the effect of systematic uncertainties. This analysis increases the exclusion limit in the region {Delta}m{sup 2} {approx}< 1eV{sup 2} when compared with the result previously published by the collaboration, which used a different technique.
Date: January 1, 2008
Creator: Aguilar-Arevalo, Alexis Armando & U., /Columbia
Partner: UNT Libraries Government Documents Department

Measurements of CP asymmetries and branching fractions of two-body charmless decays of B^0 and B^0_s mesons

Description: The thesis is organized as follows: Chapter 1 describes the theoretical framework of non-leptonic B{sub (s)}{sup 0} {yields} H{sup +}h{prime}{sup -} decays, with a simple overview of the CP violation mechanism within the Standard Model and of the most used phenomenological approaches in the evaluation of strong interaction contributions. The chapter contains also a review of the theoretical expectations and the current experimental measurements along with a discussion about the importance of studying such decays. Chapter 2 contains a general description of the Tevatron collider and of the CDF II detector. Chapter 3 is devoted to the description of the data sample used for the measurement and the method used in extracting the signal from the background. Particular attention is dedicated to the on-line trigger selection, which is crucial to collect a sample enriched in B{sub (s)}{sup 0} {yields} h{sup +}h{prime}{sup -} decays. Chapter 4 shows how the information from kinematics and particle identification was used to achieve a statistical discrimination amongst modes to extract individual measurements. The available resolutions in mass or in particle identification are separately insufficient for an event-by-event separation of B{sub (s)}{sup 0} {yields} h{sup +}h{prime}{sup -} modes. The choice of observables and the technique used to combine them is an important and innovative aspect of the analysis described in this thesis. Chapter 5 is devoted to the accurate determination of the invariant mass lineshape. This is a crucial ingredient for resolving overlapping mass peaks. This chapter details all resolution effects with particular attention at the tails due to the emission of low-energy photons from charged kaons and pions in the final state (FSR). For the first time the effect of FSR has been accurately accounted for in a CDF analysis. Chapter 6 describes how kinematic and PID information, discussed in chap. 4 and chap. 5 ...
Date: December 1, 2007
Creator: Morello, Michael Joseph & /Pisa, Scuola Normale Superiore
Partner: UNT Libraries Government Documents Department

Extracting longitudinal shower development information from crystal calorimetry plus tracking

Description: We present an approach to derive longitudinal shower development information from the longitudinally unsegmented BABAR electromagnetic calorimeter by using tracking information. Our algorithm takes advantage of the good three-dimensional tracking resolution of BABAR, which provides an independent geometric constraint on the shower as measured in the BABAR crystal calorimeter. We show that adding the derived longitudinal shower development information to standard particle identification algorithms significantly improves the low-momentum separation of pions from electrons and muons. We also verify that the energy dependence of the electromagnetic shower development we measure is consistent with the prediction of a standard electromagnetic shower model.
Date: November 1, 2007
Creator: Brown, David; Brown, D.N.; Ilic, J. & Mohanty, G.B.
Partner: UNT Libraries Government Documents Department

The Focusing DIRC - the First RICH Detector toCorrect the Chromatic Error by Timing, and the Development of a New TOFDetector Concept

Description: We have built and successfully tested a novel particle identification detector called Focusing DIRC. The prototype's concept is based on the BaBar DIRC with several important improvements: (a) much faster pixilated photon detectors based on Burle MCP-PMT and Hamamatsu MaPMT, (b) mirror allowing to make the photon detector smaller and less sensitive to background in future applications, (c) electronics allowing to measure the single photon resolution to better than {sigma} {approx} 100-200ps, which allows a correction of the chromatic error. While testing the timing resolution limits of a 64-pixel MCP-PMT with 10 mm MCP holes, we have achieved a timing resolution of {sigma} {approx} 30ps with single photoelectrons. In this paper we further investigate limits of the timing resolution with this particular detector.
Date: September 12, 2007
Creator: Va'vra, Jaroslav; Benitez, Jorge A.; Leith, David W.G.S.; Mazaheri, Gholamali; Ratcliff, Blair N.; Schwiening, Jochen et al.
Partner: UNT Libraries Government Documents Department

Azimuthal HBT and Transverse Momentum Fluctuations from CERES.

Description: CERES is a dilepton experiment at the CERN SPS, known for its observation of enhanced production of low mass efe- pairs in collisions between heavy nuclei [1]. The upgrade of CERES in 1997-1998 by a radial Time Projection Chamber (TPC) [2] allowed to improve the momentum resolution and the particle identification capability while retaining the cylindrical symmetry. The upgraded experiment is shown in Fig. 1. The upgrade also extended the sensitivity of CERES to hadrons and made possible results like those described below. The measurement of central Pb+Au collisions at the maximum SPS energy of 158 GeV per nucleon in the fall of 2000 was the first run of the fully upgraded CERES and at the same time the last run of this experiment. About 30 million Pb+Au collision events at 158 GeV per nucleon were collected, most of them with centrality within the top 7% of the geometrical cross section {sigma}{sub G} = 6.94 b. Small samples of the 20% and the minimum bias collisions, as well as a short run at 80 AGeV, were recorded in addition. The dilepton mass spectra from this experiment were published in [3]. In this talk I present two particular results of hadron analysis, the azimuthal dependence of two-pion correlations and a differential p{sub t} fluctuation study.
Date: July 9, 2007
Creator: Miskowiec,D.; Rehak, P. & al., et
Partner: UNT Libraries Government Documents Department

MiniBooNE Neutrino Physics at the University of Alabama

Description: This report summarizes the activities conducted by the UA group under the auspices of the DoE/EPSCoR grant number DE--FG02--04ER46112 since the date of the previous progress report, i.e., since November 2005. It also provides a final report of the accomplishments achieved during the entire period of this grant (February 2004 to January 2007). The grant has fully supported the work of Dr. Yong Liu (postdoctoral research assistant -- in residence at Fermilab) on the MiniBooNE reconstruction and particle identification (PID) algorithms.
Date: April 27, 2007
Creator: Stancu, Ion
Partner: UNT Libraries Government Documents Department