680 Matching Results

Search Results

Advanced search parameters have been applied.

Lightweight transformer demonstration. Quarterly status report, 27 March 1989--25 June 1989

Description: Information is presented on progress made during the reporting period: 3/27/89--6/25/89. The project goal is to support highly focused, innovative, fundamental/applied research approaches that will complement the Feasibility Assessment Program for Space Based, Multimegawatt, MHD Power Systems.(JDB)
Date: December 31, 1989
Partner: UNT Libraries Government Documents Department

Mars Rover RTG Study

Description: This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of Special Applications, in support of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. Cross Reference CID #7135 dated 10/1989. There is a duplicate copy. This document is not relevant to the OSTI Library. Do not send.
Date: November 27, 1989
Creator: Schock, Alfred
Partner: UNT Libraries Government Documents Department

Mars Rover RTG Study

Description: Presented at the 40th Congress of the IAF, Oct. 7-13, 1989 in Torremolinos, Malaga-Spain. The paper describes the design and analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the Mars Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space for the U.S. DOE in support of the JPL MRSR Project. The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It summarizes the baseline RTG's mass breakdown, and presents a detailed description of its thermal, thermoelectric, and electrical analysis. The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost. There is a duplicate copy and three copies in the file.
Date: October 1, 1989
Creator: Schock, Alfred
Partner: UNT Libraries Government Documents Department

Design and Structural Analysis of Mars Rover RTG

Description: The paper describes the design and the structural and mass analysis of a Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR project.; The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It identifies the key RTG design problem, i.e. venting the helium generated by the fuel's alpha decay without intrusion of the Martian atmosphere into the RTG, and proposes a design approach for solving that problem.; Using that approach, it describes a very conservative baseline RTG design. The design is based on the proven and safety-qualified General Purpose Heat Source module, and employs standard thermoelectric unicouples whose reliability and performance stability has been extensively demonstrated on previous space missions. The heat source of the 250-watt RTG consists of a stack of 18 separate modules that is supported at its ends but not along its length. The paper describes and analyzes the structure that holds the stack together during Earth launch and Mars operations but allows it to come apart in case of an inadvertent reentry.; A companion paper presented at this conference describes the RTG's thermal and electrical analysis, and compares its performance with that of several lighter but less conservative design options.; There is a duplicate copy in the ESD files. This document is not relevent to OSTI Library. Do not send.
Date: September 29, 1989
Creator: Schock, Alfred; Hamrick, T.; Sankarankandath, V. & Shirbacheh, M.
Partner: UNT Libraries Government Documents Department

Thermal and Electrical Analysis of MARS Rover RTG, and Performance Comparison of Alternative Design Options.

Description: The paper describes the thermal, thermoelectric and electrical analysis of Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The work described was part of an RTG design study conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR Project.; A companion paper presented at this conference described a reference mission scenario, al illustrative Rover design and activity pattern on Mars, its power system requirements and environmental constraints, a design approach enabling RTG operation in the Martian atmosphere, and the design and the structural and mass analysis of a conservative baseline RTG employing safety-qualified heat source modules and reliability-proven thermoelectric converter elements.; The present paper presents a detailed description of the baseline RTG's thermal, thermoelectric, and electrical analysis. It examines the effect of different operating conditions (beginning versus end of mission, water-cooled versus radiation-cooled, summer day versus winter night) on the RTG's performance. Finally, the paper describes and analyzes a number of alternative RTG designs, to determine the effect of different power levels (250W versus 125W), different thermoelectric element designs (standard versus short unicouples versus multicouples) and different thermoelectric figures of merit (0.00058K(superscript -1) to 0.000140K (superscript -1) on the RTG's specific power.; The results presented show the RTG performance achievable with current technology, and the performance improvements that would be achievable with various technology developments. It provides a basis for selecting the optimum strategy for meeting the Mars Rover design goals with minimal programmatic risk and cost.; There is a duplicate copy and also a duplicate copy in the ESD files.
Date: September 29, 1989
Creator: Schock, Alfred; Or, Chuen T & Skrabek, Emanuel A
Partner: UNT Libraries Government Documents Department

Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

Description: This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.
Date: September 1, 1989
Creator: Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.)
Partner: UNT Libraries Government Documents Department

Introductory testimony

Description: This report covers the uses of nuclear power in space. Various systems are discussed and an outline of a slide presentation is given. The testing and safety of these programs is also briefly mentioned. (JEF)
Date: September 1, 1989
Creator: Nolan, J. (Westinghouse Hanford Co., Richland, WA (USA))
Partner: UNT Libraries Government Documents Department

A new method for power generation and distribution in outer space

Description: The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.
Date: September 1, 1989
Creator: Bamberger, J.A.
Partner: UNT Libraries Government Documents Department

TFE Verification Program: Semiannual report for the period ending April 30, 1989

Description: The objective of the semiannual progress report is to summarize the technical results obtained during the latest reporting period. The information presented herein will include evaluated test data, design evaluations, the results of analyses and the significance of results. The program objective is to demonstrate the technology readiness of a TFE suitable for use as the basic element in a thermionic reactor with electric power output in the 0.5 to 5.0 MW(e) range, and a full-power life of 7 years. 55 figs., 30 tabs.
Date: September 1, 1989
Partner: UNT Libraries Government Documents Department

Mars Rover RTG Study

Description: This report summarizes the results of a Radioisotope Thermoelectric Generator (RTG) design study conducted by Fairchild Space Company at the direction of the U.S. Department of Energy's Office of SpecialApplications, in suppport of the Mars Rover and Sample Return mission under investigation at NASA's Jet Propulsion Laboratory. The report is a rearranged, updated, and significantly expanded amalgam of three interrelated papers presented at the 24th Intersocity Energy Conversion Engineering Conference (IECEC) at Arlington, Virginia, on August 10, 1989.
Date: August 25, 1989
Creator: Schock, Alfred
Partner: UNT Libraries Government Documents Department

Application for approval for construction of the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

Description: The following ''Application for Approval of Construction'' is being submitted by the US Department of Energy-Richland Operations Office, pursuant to 40 CFR 61.07, for three new sources of airborne radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were canceled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building and stack and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex. 2 refs., 16 figs., 12 tabs.
Date: August 1, 1989
Partner: UNT Libraries Government Documents Department

Gas production and behavior in the coolant of the SP-100 Space Nuclear Power System

Description: The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S{sub 4}/P{sub 1} approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy. 104 refs., 78 figs., 28 tabs.
Date: August 1, 1989
Creator: McGhee, J. M.
Partner: UNT Libraries Government Documents Department

General-Purpose Heat Source development: Extended series test program large fragment tests

Description: General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electric power for the NASA Galileo and European Space Agency Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electric power. Each of the 18 GPHS modules in a GPHS-RTG contains four /sup 238/PuO/sub 2/-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain the plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the launch vehicle was reconfigured and the spacecraft trajectory was modified. These actions prompted NASA to reevaluate potential mission accidents, and an extended series safety test program was initiated. The program included a series of large fragment tests that simulated the collision of solid rocket booster (SRB) fragments, generated in an SRB motor case rupture or resulting from a range safety officer SRB destruct action, with the GPHS-RTG. The tests indicated that fueled clads, inside a converter, will not breach or release fuel after a square (142 cm on a side) SRB fragment impacts flat-on at velocities up to 212 m/s, and that only the leading fueled capsules breach and release fuel after the square SRB fragment impacts the modules, inside the converter, edge-on at 95 m/s. 8 refs., 32 figs., 7 tabs.
Date: August 1, 1989
Creator: Cull, T.A.
Partner: UNT Libraries Government Documents Department

Mathematical modeling and analysis of heat pipe start-up from the frozen state

Description: The start-up process of a frozen heat pipe is described and a complete mathematical model for the start-up of the frozen heat pipe is developed based on the existing experimental data, which is simplified and solved numerically. The two-dimensional transient model for the wall and wick is coupled with the one-dimensional transient model for the vapor flow when vaporization and condensation occur at the interface. A parametric study is performed to examine the effect of the boundary specification at the surface of the outer wall on the successful start-up from the frozen state. For successful start-up, the boundary specification at the outer wall surface must melt the working substance in the condenser before dry-out takes place in the evaporator.
Date: August 1, 1989
Creator: Jang, J. H.; Faghri, A.; Chang, W. S. & Mahefkey, E. T.
Partner: UNT Libraries Government Documents Department

Pressure Fed Nuclear Thermal Rockets for space missions

Description: The National Space Policy includes a long range goal of expanding human presence and activity beyond Earth orbit into the solar system. This has renewed interest in the potential application of Nuclear Thermal Rockets (NTR) to space flight, particularly for human expeditions to the Moon and Mars. Recent NASA studies consider applications of the previously developed NERVA (Nuclear Engine for Rocket Vehicle Application) technology and the more advanced gas core reactors and show their potential advantages in reducing the initial mass in Earth orbit (IMEO) compared to advanced chemical rocket engines. Application of NERVA technology will require reestablishing the prior technological base or extending it to an advanced NERVA type engine, while the gas core NTR will require an extensive high risk research and development program. A technology intermediate between NERVA and the gas core NTR is a low pressure engine based on solid fuel, a Pressure Fed NTR (PFNTR). In addition to the simplicity of the gas pressurized engine cycle, the PFNTR takes advantage of the dissociation of hydrogen-the increases in specific impulse become significant as the chamber pressure decreases below 1.0 MPa (10 atmospheres) and the chamber temperature increases above 3000 K. The developmental status of technology applicable to a Pressure Fed Nuclear Thermal Rocket (PFNTR) lies between that of the NERVA engine and the gas core NTR (GCNTR). This document investigates PFNTR performance and provides typical mission analyses.
Date: August 1, 1989
Creator: Leyse, C.F. (Leyse (C.F.), Idaho Falls, ID (USA)); Madsen, W.W.; Ramsthaler, J.H. & Schnitzler, B.G. (EG and G Idaho, Inc., Idaho Falls, ID (USA))
Partner: UNT Libraries Government Documents Department

Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

Description: This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.
Date: August 1, 1989
Partner: UNT Libraries Government Documents Department

A review of gas-cooled reactor concepts for SDI (Strategic Defense Initiative) applications

Description: We have completed a review of multimegawatt gas-cooled reactor concepts proposed for SDI applications. Our study concluded that the principal reason for considering gas-cooled reactors for burst-mode operation was the potential for significant system mass savings over closed-cycle systems if open-cycle gas-cooled operation (effluent exhausted to space) is acceptable. The principal reason for considering gas-cooled reactors for steady-state operation is that they may represent a lower technology risk than other approaches. In the review, nine gas-cooled reactor concepts were compared to identify the most promising. For burst-mode operation, the NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor concept emerged as a strong first choice since its performance exceeds the anticipated operational requirements and the technology has been demonstrated and is retrievable. Although the NERVA derivative concepts were determined to be the lead candidates for the Multimegawatt Steady-State (MMWSS) mode as well, their lead over the other candidates is not as great as for the burst mode. 90 refs., 2 figs., 10 tabs.
Date: August 1, 1989
Creator: Marshall, A.C.
Partner: UNT Libraries Government Documents Department

Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area

Description: This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.
Date: August 1, 1989
Partner: UNT Libraries Government Documents Department

Thermionic converter emitter support arrangement

Description: This document discusses a support provided for use in a thermionic converter to support an end of an emitter to keep it out of contact with a surrounding collector while allowing the emitter end to move axially as its temperature changes. The emitter end is supported by a spring structure that includes a pair of Belleville springs, and the spring structure is supported by a support structure fixed to the housing that includes the collector. The support structure is in the form of a sandwich with a small metal spring-engaging element at the front end, a larger metal main support at the rear end that is attached to the housing, and with a ceramic layer between them that is bonded by hot isostatic pressing to the metal element and metal main support. The spring structure can include a loose wafer captured between the Belleville springs. 7 figs.
Date: July 6, 1989
Creator: Allen, D.T.
Partner: UNT Libraries Government Documents Department

Analysis of the transient compressible vapor flow in heat pipe

Description: The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.
Date: July 1, 1989
Creator: Jang, J. H.; Faghri, A. & Chang, W. S.
Partner: UNT Libraries Government Documents Department

Pulsed laser propulsion for low cost, high volume launch to orbit

Description: Pulsed laser propulsion offers the prospect of delivering high thrust at high specific impulse (500-1000 seconds) from a very simple thruster, using the energy of a remote ground-based laser to heat an inert propellant. Current analyses indicate that payloads of approximately 1 kg per megawatt of average laser power can be launched at a rate of one payload every 15 minutes and a marginal cost of $20 to $200 per kg. A 20 MW entry-level launch system could be built using current technology at a cost of $500 million or less; it would be capable of placing 600 tons per year into LEO. The SDIO Laser Propulsion Program has been developing the technology for such a launch system since 1987. The program has conducted theoretical and experimental research on a particular class of laser-driven thruster, the planar double-pulse LSD-wave thruster, which could be used for a near-term launcher. The double-pulse thruster offers several advantages, including extreme simplicity, design flexibility, and the ability to guide a vehicle remotely by precise control of the laser beam. Small-scale experiments have demonstrated the operation of this thruster at a specific impulse of 600 seconds and 10% efficiency; larger experiments now under way are expected to increase this to at least 20% efficiency. Systems-level issues, from guidance and tracking to possible unique applications, have also been considered and will be briefly discussed. There appear to be no fundamental obstacles to creating, in the next five to ten years, a new low-cost ''pipe-line to space.'' 7 refs., 2 figs., 1 tab.
Date: June 2, 1989
Creator: Kare, J.
Partner: UNT Libraries Government Documents Department

General-purpose heat source development: Extended series test program SRB fragment/fuselage tests

Description: General-Purpose Heat Source radioisotope thermoelectric generators (GPHS-RTGs) will provide electrical power for the NASA Galileo and European Space Agency (ESA) Ulysses missions. Each GPHS-RTG comprises two major components: GPHS modules, which provide thermal energy, and a thermoelectric converter, which converts the thermal energy into electrical power. Each of the 18 GPHS modules in a GPHS-RTG contains four /sup 238/PuO/sub 2/-fueled capsules. LANL conducted a series of safety verification tests on the GPHS-RTG before the scheduled May 1986 launch of the Galileo spacecraft to assess the ability of the GPHS modules to contain plutonia in potential accident environments. As a result of the Challenger 51-L accident in January 1986, NASA postponed the launch of Galileo; the spacecraft launch vehicle was reconfigured and the spacecraft trajectory modified. These actions prompted NASA to reevaluate potential mission accidents and the extended series safety test program was initiated. This program included a series of solid rocket booster (SRB) fragment/fuselage tests that simulated the interaction of SRB fragments generated in an SRB motor case rupture (or resulting from a range safety officer SRB destruct action) with sections of the Shuttle Orbiter. The test data helped verify and refine the analytical models of the SRB fragment/fuselage interaction. The results showed that the fragment velocity decreased significantly (up to 40%) after penetrating the Orbiter section(s). The interactions also reduced, and in some cases eliminated, the original fragment rotational rate and direction and initiated rotation in other directions. 5 refs., 11 figs., 2 tabs.
Date: June 1, 1989
Creator: Cull, T.A.
Partner: UNT Libraries Government Documents Department

Definitive design status of the SP-100 Ground Engineering System Test Site

Description: The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.
Date: May 1, 1989
Creator: Renkey, E. J. Jr.; Bazinet, G. D.; Bitten, E. J.; Brackenbury, P. J.; Carlson, W. F.; Irwin, J. J. et al.
Partner: UNT Libraries Government Documents Department

GPHS (General Purpose Heat Source) uranium oxide encapsulations supporting satellite safety tests

Description: General Purpose Heat Source (GPHS) simulant-fueled capsules were assembled, welded, nondestructively examined, and shipped to Los Alamos National Laboratory (LANL) for satellite safety tests. Simulant-fueled iridium capsules contain depleted uranium oxide pellets that serve as a stand-in for plutonium-238 oxide pellets. Information on forty seven capsules prepared during 1987 and 1988 is recorded in this memorandum along with a description of the processes used for encapsulation and evaluation. LANL expects to use all capsules for destructive safety tests, which are under way. Test results so far have demonstrated excellent integrity of the Savannah River capsule welds. 10 refs., 5 figs., 3 tabs.
Date: April 24, 1989
Creator: Kanne, W. R.
Partner: UNT Libraries Government Documents Department