982 Matching Results

Search Results

Advanced search parameters have been applied.

Examination of the Alignment between the SHRM Competency Model and Undergraduate Syllabi of Human Resources and Management Degree Programs in Texas

Description: The purpose of this study was to provide a snapshot of current Human Resources (HR) and Management curricula of four-year public universities in Texas in 2016 and evaluate their alignment with the competencies of the SHRM Competency Model®. This study used a mixed methods approach and analyzed course syllabi for a purposeful sample of 21 public universities in Texas. The course objectives referenced explicitly and/or implicitly all nine competencies. Three courses encompassed all nine competencies, and 84% of all programs demonstrated alignment with the competencies. “Business Acumen”, “Critical Evaluation”, “Communication” and “Relationship Management” were the most frequently referenced competencies in course syllabi. “Consultation” appeared the least frequently. This comprehensive analysis revealed that there is alignment between course curricula of public universities in Texas and competency expectations of graduates wishing to pursue a career in Human Resources. Recommendations applied to four areas including scholarship, university administration, professional associations, and practitioners.
Date: May 2016
Creator: Gavrilova Aguilar, Mariya C
Partner: UNT Libraries

Business/it Alignment: the Impact of Incentive Plans on the Development of Shared Vision

Description: This study, utilizing Preston and Karahanna’s framework for shared vision development and Agency Theory, explores the impact of vision development factors and factors associated with incentive plans on shared vision and alignment. Results of the study confirm the strong relationship between shared vision and alignment, and indicate that having an effective management team is important with respect to developing and maintaining shared vision and alignment within the organization. Several vision development factors such as using the language of the business, participation on the top management team (TMT), and having knowledge of the business impact shared vision through their influence on teamwork. Also, results of this study suggest that participation on the TMT by the CIO/IT leader is more important than the individual’s position in the organizational hierarchy. In addition, attributes associated with incentive plans such as achievable and clear measures, measures linked to organizational goals, measures that align the interests of the individual with those of the organization, regular plan reviews, and using a balanced scorecard approach with respect to incentive plan design positively impact teamwork and shared vision. For practitioners, this highlights the importance of incentive plans as powerful tools that can be used to reinforce shared vision, effective teamwork, and alignment within the organization. Also, the CIO/IT leader needs to be knowledgeable of the business and must fill the role of both a technologist as well as an enterprise leader. This person must be an evangelist communicating the value and benefits of IT to the rest of the organization.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Johnson, Vess L.
Partner: UNT Libraries

The Use of Optical Metrology in Active Positioning of a Lens

Description: Precisely positioned optical lenses are currently required for many highly repetitive mechanics and applications. Thus the need for micron-scale repetition between opto-mechanical units is evident, especially in industrial manufacturing and medical breakthroughs. In this thesis, a novel optical metrology system is proposed, designed, and built whose purpose is to precisely locate the center of a mechanical fixture and then to assemble a plano-convex optical lens into the located position of the fixture. Center location specifications up to ±3 µm decenter and ±0.001° tilting accuracy are required. Nine precisely positioned lenses and fixtures were built with eight units passing the requirements with a repetitive standard deviation of ±0.15 µm or less. The assembled units show satisfactory results.
Date: August 2014
Creator: Ji, Zheng
Partner: UNT Libraries

An Integrated Support and Alignment System for Large ILC Lattice Elements

Description: The manipulators used to support and position lattice elements are critical components of all particle accelerators. The increased use of large superconducting magnets and accelerator modules places even greater demands on these manipulators. However, the performance of these support systems has not kept pace with the advances made in other areas of accelerator technology. This results in accelerators that are difficult to align and may not be capable of achieving target luminosities. An innovative new type of positioning mechanism tailored to the requirements of the International Linear Collider is proposed. The Tri-Sphere System provides secure support for large lattice elements and precision adjustment in six degrees of freedom. Integrated target sockets allow the support system to be rapidly pre-aligned. The system’s kinematic design passively guides lattice elements into their correct location during installation. A complimentary Portable Actuation Unit provides the advantages of automated adjustment and allows these adjustments to be completely decoupled from surveying.
Date: May 15, 2013
Creator: Viola, Robert
Partner: UNT Libraries Government Documents Department

Fast Beam-Based BPM Calibration

Description: The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.
Date: October 15, 2012
Creator: Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F. & /SLAC
Partner: UNT Libraries Government Documents Department

A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays Final Technical Report

Description: This is the final technical report for the SBIR Phase I project titled 'A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays.' Experiments using diffraction of synchrotron radiation that help scientists understand engineering material failure modes, such as fracture and fatigue, require specialized machinery. This machinery must be able to induce these failure modes in a material specimen while adhering to strict size, weight, and geometric limitations prescribed by diffraction measurement techniques. During this Phase I project, Mechanical Solutions, Inc. (MSI) developed one such machine capable of applying uniaxial mechanical loading to a material specimen in both tension and compression, with zero backlash while transitioning between the two. Engineers currently compensate for a lack of understanding of fracture and fatigue by employing factors of safety in crucial system components. Thus, mechanical and structural parts are several times bigger, thicker, and heavier than they need to be. The scientific discoveries that result from diffraction experiments which utilize sophisticated mechanical loading devices will allow for broad material, weight, fuel, and cost savings in engineering design across all industries, while reducing the number of catastrophic failures in transportation, power generation, infrastructure, and all other engineering systems. With an existing load frame as the starting point, the research focused on two main areas: (1) the design of a specimen alignment and gripping system that enables pure uniaxial tension and compression loading (and no bending, shear, or torsion), and (2) development of a feedback control system that is adaptive and thus can maintain a load set point despite changing specimen material properties (e.g. a decreasing stiffness during yield).
Date: August 2, 2012
Creator: Weiss, Jeremy
Partner: UNT Libraries Government Documents Department

FACET Tolerances for Static and Dynamic Misalignments

Description: The Facility for AdvancedAccelerator and Experimental Tests (FACET) at the SLAC National Accelerator Laboratory is designed to deliver a beam with a transverse spot size on the order of 10 {micro}m x 10 {micro}m in a new beamline constructed at the two kilometer point of the SLAC linac. Commissioning the beamline requires mitigating alignment errors and their effects, which can be significant and result in spot sizes orders of magnitude larger. Sextupole and quadrupole alignment errors in particular can introduce errors in focusing, steering, and dispersion which can result in spot size growth, beta mismatch, and waist movement. Alignment errors due to static misalignments, mechanical jitter, energy jitter, and other physical processes can be analyzed to determine the level of accuracy and precision that the beamline requires. It is important to recognize these effects and their tolerances in order to deliver a beam as designed.
Date: July 13, 2012
Creator: Federico, Joel
Partner: UNT Libraries Government Documents Department

Analysis on linac quadrupole misalignment in FACET commissioning 2012

Description: In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.
Date: July 5, 2012
Creator: Sun, Yipeng
Partner: UNT Libraries Government Documents Department

Design of the FRIB Cryomodule

Description: An advanced, modular bottom-supported cryomodule design is described which is highly optimized for mass-production and efficient precision-assembly. The FRIB driver linac uses 4 types of superconducting resonators and 2 solenoid lengths which in turn require 7 individual cryomodule configurations. To meet alignment tolerances a precision-machined bolted cryomodule rail system is described. A novel, kinematic mounting system of the cold mass is introduced which allows for thermal contractions while preserving alignment. A first prototype will incorporate a wire position monitor for alignment verification. The cold alignment structure is supported by composite posts which also function as thermal isolators. The cryogenic system provides separate 2 K and 4.5 K liquid helium lines to cavities and solenoids. Details of the JT valves, heat exchanger, cool-down circuit and junction to cryogenic line will be provided. Transient cool-down was simulated for stresses and buckling failure. A 1100-O Aluminum shield is used as a thermal radiation shield. The paper also describes cryomodule interfaces with the linac tunnel, the RF input cables, and the cryogenic distribution system.
Date: July 1, 2012
Creator: Johnson, M J; Binkowski, J; Bricker, S; Casagrande, F; Fox, A D; Lang, B R et al.
Partner: UNT Libraries Government Documents Department

LCLS-II Undulator Tolerance Analysis

Description: The SLAC National Accelerator Laboratory is building a new FEL user facility, LCLS-II, as a major upgrade to the Linear Coherent Light Source (LCLS). The upgrade will include two new Free Electron Lasers (FELs), to generate soft (SXR) and hard x-ray (HXR) SASE FEL radiation, based on planar, variable gap hybrid undulators with two different undulator periods (SXU: 55 mm, HXU: 32 mm). An algebraic FEL tolerance analysis for the undulator lines, including tuning, alignment, and phase correction tolerances has been performed. The methods and results are presented in this paper.
Date: June 6, 2012
Creator: Nuhn, H.-D.; /SLAC; Marks, S.; /LBL, Berkeley; Wu, J. & /SLAC
Partner: UNT Libraries Government Documents Department

Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

Description: An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.
Date: May 16, 2012
Creator: Marsh, R A; Anderson, S G & Armstrong, J P
Partner: UNT Libraries Government Documents Department

A Linac Simulation Code for Macro-Particles Tracking and Steering Algorithm Implementation

Description: In this paper, a linac simulation code written in Fortran90 is presented and several simulation examples are given. This code is optimized to implement linac alignment and steering algorithms, and evaluate the accelerator errors such as RF phase and acceleration gradient, quadrupole and BPM misalignment. It can track a single particle or a bunch of particles through normal linear accelerator elements such as quadrupole, RF cavity, dipole corrector and drift space. One-to-one steering algorithm and a global alignment (steering) algorithm are implemented in this code.
Date: May 3, 2012
Creator: sun, yipeng
Partner: UNT Libraries Government Documents Department

Alignment and Aperture Scan at the Fermilab Booster

Description: The Fermilab Booster is currently in the process of an intensity upgrade referred to as the Proton Improvement Plan (PIP). The goal of PIP is to have the Booster provide a proton beam flux of 2 x 10{sup 17} protons/hour. This is almost double the current operation of 1.1 x 10{sup 17} protons/hour. Beam losses in the machine due to the increased flux will create larger integrated doses on aperture limiting components that will need to be mitigated. The Booster accelerates beam from 400 MeV to 8 GeV at a rep rate of 15hz and then extracts beam to the Main Injector. Several percent of the beam is lost within 3 msec after injection in the early part of acceleration. The aperture at injection energy was recently measured using corrector scans. Along with magnet survey data and aperture scan data a plan to realign the magnets in the Booster was developed and implemented in May 2012. The beam studies, analysis of the scan and alignment data, and the result of the magnet moves are presented.
Date: May 1, 2012
Creator: Seiya, K.; Lackey, J.; Marsh, W.; Pellico, W.; Still, D.; Triplet, K. et al.
Partner: UNT Libraries Government Documents Department

Simulation of Hollow Electron Beam Collimation in the Fermilab Tevatron Collider

Description: The concept of augmenting the conventional collimation system of high-energy storage rings with a hollow electron beam was successfully demonstrated in experiments at the Tevatron. A reliable numerical model is required for understanding particle dynamics in the presence of a hollow beam collimator. Several models were developed to describe imperfections of the electron beam profile and alignment. The features of the imperfections are estimated from electron beam profile measurements. Numerical simulations of halo removal rates are compared with experimental data taken at the Tevatron.
Date: May 1, 2012
Creator: Morozov, I.A.; Stancari, G.; Valishev, A.; /Fermilab; Shatilov, D.N. & /Novosibirsk, IYF
Partner: UNT Libraries Government Documents Department

Coherent electron cooling proof of principle instrumentation design

Description: The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.
Date: April 15, 2012
Creator: M., Gassner D.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M. & Pinayev, I.
Partner: UNT Libraries Government Documents Department

PEP-X: An Ultimate Storage Ring Based on Fourth-Order Geometric Achromats

Description: We have designed an 'ultimate' storage ring for the PEP-X light source that achieves the diffraction limited emittances (at 1.5 {angstrom}) of 12 pm-rad in both horizontal and vertical planes with a 4.5-GeV beam. These emittances include the contribution of intrabeam scattering at a nominal current of 200 mA in 3300 bunches. This quality beam in conjunction with a conventional 4-m undulator in a straight section can generate synchrotron radiation having a spectral brightness above 10{sup 22} [photons/s/mm{sup 2}/mrad{sup 2}/0.1% BW] at a 10 keV photon energy. The high coherence at the diffraction limit makes PEP-X competitive with 4th generation light sources based on an energy recovery linac. In addition, the beam lifetime is several hours and the dynamic aperture is large enough to allow off-axis injection. The alignment and stability tolerances, though challenging, are achievable. A ring with all these properties is only possible because of several major advances in mitigating the effects of nonlinear resonances.
Date: April 6, 2012
Creator: Cai, Yunhai; Bane, Karl; Hettel, Robert; Nosochkov, Yuri; Wang, Min-Huey & /SLAC
Partner: UNT Libraries Government Documents Department

Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

Description: As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.
Date: April 1, 2012
Creator: Stynes, J. K. & Ihas, B.
Partner: UNT Libraries Government Documents Department

Gearbox Reliability Collaborative: Test and Model Investigation of Sun Orbit and Planet Load Share in a Wind Turbine Gearbox; Preprint

Description: This paper analyzes experimental measurement of the sun gear orbit in dynamometer testing and describes its relation to the other measured responses of the planetary stage. The relation of the sun orbit to component runout, component flexibility, gear coupling alignment, planet load share, and planet position error will be investigated. Equations describing the orbit of the sun gear in the test cases are derived. Rigid and flexible multibody models of the full gearbox are investigated and compared to sun and planet measurements. This paper shows that the sun gear's path may be influenced by gear coupling responses and gearbox structural flexibilities.
Date: April 1, 2012
Creator: LaCava, W.; Keller, J. & McNiff, B.
Partner: UNT Libraries Government Documents Department

Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version

Description: The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be ...
Date: April 1, 2012
Creator: Cornwell, Paris A; Bunn, Jeffrey R; Schmidlin, Joshua E & Hubbard, Camden R
Partner: UNT Libraries Government Documents Department

Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

Description: The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of the absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.
Date: April 1, 2012
Creator: Stynes, J. K. & Ihas, B.
Partner: UNT Libraries Government Documents Department

Index Sets and Vectorization

Description: Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.
Date: March 27, 2012
Creator: Keasler, J A
Partner: UNT Libraries Government Documents Department

On the origin of radiation growth of hcp crystals

Description: The aim of the present work is to study theoretically the radiation growth (RG) of hcp-type materials with a particular focus on the effect of one-dimensionally (1-D) migrating clusters of self-interstitial atoms (SIAs), which are steadily produced in displacement cascades under neutron or heavy-ion irradiation. A reaction-diffusion model is developed for the description of RG in single hcp-type metallic crystals. The model reproduces all RG stages observed in neutron-irradiated annealed samples of pure Zr and Zr alloys, such as high strain rate at low, strain saturation at intermediate and breakaway growth at relatively high irradiation doses. In addition, it accounts for the striking observations of negative strains in prismatic directions and coexistence of vacancy- and SIA-type prismatic loops. The role of cold work in RG behavior and alignment of the vacancy-type loops along basal planes are revealed and the maximum strain rate is estimated.
Date: March 1, 2012
Creator: Golubov, Stanislav I.; Barashev, Aleksandr & Stoller, Roger E.
Partner: UNT Libraries Government Documents Department

Visualization of Target Inspection data at the National Ignition Facility

Description: As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.
Date: February 16, 2012
Creator: Potter, D & Antipa, N
Partner: UNT Libraries Government Documents Department