10 Matching Results

Search Results

Advanced search parameters have been applied.

Energy measurement using a resonator-based time-of-flight system

Description: The resonant time-of-flight system which has been developed has several advantages over other potential approaches. The system is non-interceptive and nondestructive. The beam phase space is preserved. It is non-dispersive. Path length variations are not introduced into the beam transport which would reduce the timing resolution. It has a large signal-to-noise ratio when compared to non-resonant beam pick-up techniques. It provides the means to precisely set the linac energy and, potentially, to control the energy in a feedback loop is desired. It is less expensive than an equivalent magnetic system.
Date: January 1, 1983
Creator: Pardo, R.C.; Lewis, R.N.; Johnson, K.W. & Clifft, B.
Partner: UNT Libraries Government Documents Department

Bulk-assay calorimeter: Part 1. System design and operation. Part 2. Calibration and testing

Description: The Bulk-Assay Calorimeter is designed to measure the thermal power emitted by plutonium-containing samples. The sample power range of the instrument is 1.4 to 22.4 W. The instrument package consists of the calorimeter measurement chamber, the control circuit power bin, and the data acquisition system. Two sample preheating chambers and five calorimeter canisters for containing the samples are included. A set of 32 test points which monitor voltages at points within the calorimeter and its control circuitry are accessed by the data acquisition system. The use of the test points is described. System start-up and checkout are described. Sample assay and preheater operation procedures are given. The data acquisition system and data analysis software are described. The calorimeter was calibrated at 23 points with heat sources from 1.4 to 22.4 watts. The combined measurement error varied with sample power from 1.4% to 0.1% over the range of calibration measurements. Circuit diagrams for the calorimeter and schematics for the data acquisition system are included. (LEW)
Date: January 1, 1982
Creator: Perry, R.B.; Roche, C.T.; Harkness, A.L.; Winslow, G.H.; Youngdahl, G.A.; Lewis, R.N. et al.
Partner: UNT Libraries Government Documents Department

ANL four-meter calorimeter design and operation manual

Description: The four-meter fuel rod calorimetric system measures the thermal power produced by radioactive decay of fuel rods containing Pu. The Pu mass is related to the measured power through the weighted average of the product of the isotopic decay energies and the decay constants of the Pu isotopes present. U content has no effect since the thermal power produced by the U nuclides is insignificant when compared to Pu. Radiations from Pu are alpha particles and low-energy photons. This calorimeter will measure samples producing power up to 1.5 watts at a rate of one sample every 120 min. The instrument consists of a data-acquisition module made up of a microprocessor, with an 8K-byte nonvolatile memory, a control cabinet and the calorimeter chamber. (FS)
Date: February 1, 1980
Creator: Perry, R.B.; Lewis, R.N.; Youngdahl, G.A.; Jung, E.A. & Roche, C.T.
Partner: UNT Libraries Government Documents Department

ANL small-sample calorimeter system design and operation

Description: The Small-Sample Calorimetric System is a portable instrument designed to measure the thermal power produced by radioactive decay of plutonium-containing fuels. The small-sample calorimeter is capable of measuring samples producing power up to 32 milliwatts at a rate of one sample every 20 min. The instrument is contained in two packages: a data-acquisition module consisting of a microprocessor with an 8K-byte nonvolatile memory, and a measurement module consisting of the calorimeter and a sample preheater. The total weight of the system is 18 kg.
Date: July 1, 1978
Creator: Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A. & Haumann, J.R.
Partner: UNT Libraries Government Documents Department

Calorimetric systems designed for in-field nondestructive assay of plutonium-bearing materials

Description: Conventional calorimetric design measures the temperature rise of a plutonium-containing sample chamber in contact with a large water-bath heat sink. This design lacks the mobility needed by inspection personnel. The Argonne National Laboratory air-chamber isothermal calorimeters are low-thermal capacitance devices which eliminate the need for large, constant-temperature heat sinks. A bulk calorimeter designed to measure sealed containers holding up to 3 kg Pu, and a small-sample calorimeter designed to measure mixed-oxide fuel pellets and powders are discussed. The operational characteristics of these instruments are described, and the results of sample assays are presented. (2 figs., 2 tables)
Date: January 1, 1978
Creator: Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A. & Haumann, J.R.
Partner: UNT Libraries Government Documents Department

Phase measurement and control of bunched beams

Description: An ion bean buncher was developed at ANL for bunching all ion species through a tandem accelerator. Transit time variations through the tandem, caused by ripple and fluctuations in the injection and lens power supplies and terminal voltage, and to varying voltage distributions in the accelerating tube, cause a beam-phase variation at the output of the tandem. A beam-phase measurement and control system was designed and installed in conjunction with the ion beam buncher to control beam phase at the tandem output. That system is described. (GHT)
Date: January 1, 1978
Creator: Lewis, R.N.
Partner: UNT Libraries Government Documents Department

A Portable Calorimeter System for Nondestructive Assay of Mixed-Oxide Fuels

Description: Calorimetric assay provides a precise, nondestructive method to determine sample plutonium content based on the heat emitted by decaying radionuclides. This measurement, in combination with a gamma-spectrometer analysis of sample isotopic content, yields the total sample plutonium mass. The technique is applicable to sealed containers and is essentially independent of sample matrix configuration and elemental composition. Conventional calorimeter designs employ large water-bath heat sinks and lack the portability needed by inspection personnel. The ANL air-chamber isothermal calorimeters are low-thermal-capacitance devices which eliminate the need for large constant-temperature heat sinks. These instruments are designed to use a feedback system that applies power to maintain the sample chamber at a constant electrical resistance and, therefore, at a constant temperature. The applied-power difference between a plutonium-containing sample and a blank determines the radioactive-decay power. The operating characteristics of a calorimeter designed for assaying mixed-oxide powders, fuel pellets, and plutonium-containing solutions are discussed. This device consists of the calorimeter, sample pre-heater, and a microprocessor-controlled data-acquisition system. The small-sample device weighs 18 kg and has a measurement cycle of 20 min, with a precision of 0.1% at 10 mW. A 100-min gamma-ray measurement gives the specific power with a precision of better than 1% for samples containing 1 to 2 g of plutonium.
Date: 1978
Creator: Roche, C. T.; Perry, R. B.; Lewis, R. N.; Jung, E. A. & Haumann, J. R.
Partner: UNT Libraries Government Documents Department

Plutonium Calorimetry and SNM Holdup Measurements, Progress Report: March 1976-August 1976

Description: The calorimetric instrumentation developed at Argonne National Laboratory (ANL) for making nondestructive measurements of the plutonium content of fuel rods is discussed. Measurements with these instruments are relatively fast (i.e., 15 to 20 minutes) when compared to the several hours usually required with more conventional calorimeters and for this reason are called ''fast-response.'' Most of the discussion concerns the One-Meter and the Four-Meter Fuel-Rod Calorimeters and the Analytical Small-Sample Calorimeter. However, to provide some background and continuity where needed, a small amount of discussion is devoted to the three earlier calorimeters which have been described previously in the literature. A brief review is presented of the literature on plutonium holdup measurements. The use of gamma-ray techniques for holdup measurements is discussed and results are given for the determination of sample thickness using the ratio of intensities of high- and low-energy gamma rays. The measurements cover the plutonium metal thickness range from 0.001 to 0.120 inches. The design of a gamma-ray collimator with 37 parallel holes is also discussed. Neutron-counting experiments using BF3 proportional counters embedded in two polyethylene slabs are described. This detector configuration is characterized for its sensitivity to sample and background plutonium, counting both coincidence (fission) and total neutrons. In addition, the use of infrared imaging devices to measure small temperature differences is considered for locating large amounts of plutonium holdup and also for performing fast attribute checks for fabricated fuel elements.
Date: February 1977
Creator: Brumbach, S. B.; Finkbeiner, A. M.; Lewis, R. N. & Perry, R. B.
Partner: UNT Libraries Government Documents Department