918 Matching Results

Search Results

Advanced search parameters have been applied.

Drawdown behavior of gravity drainage wells

Description: An analytical solution for drawdown in gravity drainage wells is developed. The free-surface flow is viewed as incompressible, and anisotropy effects are included. The well is a line source well, and the reservoir is infinitely large. The model is valid for small drawdowns. The uniform wellbore potential inner boundary condition is modelled using the proper Green`s function. The discontinuity at the wellbore is solved by introducing a finite skin radius, and the formulation produces a seepage face. The calculated wellbore flux distribution and wellbore pressures are in fair agreement with results obtained using a numerical gravity drainage simulator. Three distinct flow periods are observed. The wellbore storage period is caused by the moving liquid level, and the duration is short. During the long intermediate flow period, the wellbore pressure is nearly constant. In this period the free surface moves downwards, and the liquid is produced mainly by vertical drainage. At long times the semilog straight line appears. The confined liquid solutions by Theis (1935) and van Everdingen and Hurst (1949) may be used during the pseudoradial flow period if the flowrate is low. New type curves are presented that yield both vertical and horizontal permeabilities.
Date: October 1, 1993
Creator: Aasen, J. A. & Ramey, H. J. Jr.
Partner: UNT Libraries Government Documents Department

Hydrothermal injection research program. Annual progress report, FY 1984

Description: Studies are described to develop tracers which do not interact with a reservoir and to calculate the mixing of injected fluids and native reservoir fluids. Techniques to calculate the reactions of injected fluids with reservoir rocks are presented. Test results at East Mesa and Raft River Geothermal fields are described and interpretations of field mixing in terms of reservoir characteristics are developed. Supporting laboratory experiments on fracture flow are used to assure that interpretations of field data are based on sound theoretical concepts. A computer code, FRACSL, is described which is used to analyze the fluid mixing data obtained in laboratory and field experiments.
Date: November 1, 1984
Creator: Adams, M.; Capuano, R. G.; Wright, M.; Clemo, T. M.; Hull, L. C.; Miller, J. D. et al.
Partner: UNT Libraries Government Documents Department

Bond strength of cementitious borehole plugs in welded tuff

Description: Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.
Date: February 1, 1991
Creator: Akgun, H. & Daemen, J. J. K.
Partner: UNT Libraries Government Documents Department

A hypervelocity projectile launcher for well perforation

Description: Current oil well perforation techniques use low- to medium-velocity gun launchers for completing wells in soft rock. Shaped-charge jets are normally used in harder, more competent rock. A device to create a much higher velocity projectile was designed. This launcher will provide an alternative technique to be used when the conventional devices do not yield the maximum well performance. It is an adaptation of the axial cavity in a high explosive (HE) annulus design, with the axial cavity being filled with a low density foam material. Two configurations were tested; both had an HE annulus filled with organic foam, one had a projectile. Comparison of the two shots was made. A time sequence of Image Intensifier Camera photographs and sequential, orthogonal flash x-ray radiographs provided information on the propagation of the foam fragments, the first shock wave disturbance, the projectile motion and deformation, and the direct shock wave transmission from the main HE charge. DYNA2D calculations were made to assist in the experimental interpretation. 25 refs., 9 figs.
Date: January 1, 1989
Creator: Albright, J.N.; Fugelso, L.E.; Lagner, G.C. & Burns, K.L.
Partner: UNT Libraries Government Documents Department

A model for predicting damage dependent response of inelastic media with microstructure

Description: This paper presents a model developed for predicting the mechanical response of inelastic media with heterogeneous microstructure. Particular emphasis is given to the development of microstructural damage along grains. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing fracture mechanics-based cohesive zone models. In addition, the grains are assumed to be characterized by nonlinear viscoplastic material behavior. Implementation of the model to a finite element computational algorithm is also briefly described, and example solutions are obtained. Finally, homogenization procedures are discussed for obtaining macroscopic damage dependent mechanical constitutive equations that may then be utilized to construct a well-posed boundary value problem for the macroscopically homogenized damage dependent medium.
Date: December 1, 1997
Creator: Allen, D.H.; DeVries, K.L. & Hurtado, L.D.
Partner: UNT Libraries Government Documents Department

Summary of selected compressed air energy storage studies

Description: A descriptive summarily of research and development in compressed air energy storage technology is presented. Research funded primarily by the Department of Energy is described. Results of studies by other groups and experience at the Huntorf plant in West Germany are included. Feasibility studies performed by General Electric are summarized. The feasibility of air storage in dissolved salt cavities is also demonstrated. (BCS)
Date: January 1, 1985
Creator: Allen, R.D.; Doherty, T.J. & Kannberg, L.D.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.
Date: July 30, 1996
Creator: Allison, E. & Morgan, C.D.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, July 1, 1995--September 30, 1995

Description: The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones and water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.
Date: October 15, 1995
Creator: Allison, E. & Morgan, C.D.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Deliverable 2.5.4 Ferron sandstone lithologic strip logs, Emergy & Sevier Counties, Utah, Volume II

Description: This report contains data pertaining to the geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a Fluvial-Deltaic reservoir.
Date: December 8, 1995
Creator: Allison, M. L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. [Quarterly] report, January 1--March 31, 1994

Description: The objective of this project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir which will allow realistic interwell and reservoir-scale modeling to be used for improved oil-field development in similar reservoirs world wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a 3-D representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for interwell to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduce economic risks, increase recovery from existing oil fields, and provide more reliable reserve calculations. Transfer of the project results to the petroleum industry will be an integral component of the project. The technical progress is divided into several sections corresponding to subtasks outlined in the Regional Stratigraphy Task and the Case Studies Task of the original proposal. The primary objective of the Regional Stratigraphy Task is to provide a more detailed interpretation of the stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek. The morphological framework established from the case studies will be used to generate subsequent flow models for the reservoir types. The primary objective of the Case Study Task is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Sedimentary structures, lithofacies, bounding surfaces, and permeabilities measured along closely spaced traverses (both vertical and horizontal) will be combined with data from core drilling to develop a 3-D morphology of the reservoirs within each case study area.
Date: April 22, 1994
Creator: Allison, M. L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly progress report, January 1, 1997--March 31, 1997

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.
Date: May 1, 1997
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly progress report, October 1, 1997--December 31, 1997

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.
Date: January 1, 1998
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Quarterly report, April 1, 1997--June 30, 1997

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve a reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.
Date: July 1, 1997
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, April 1--June 30, 1995

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Technical progress this quarter is divided into regional stratigraphy, case studies, stochastic modeling and fluid-flow simulation, and technology transfer activities. The regional stratigraphy of the Ferron Sandstone outcrop belt from Last Chance Creek to Ferron Creek is being described and interpreted. Photomosaics and a database of existing surface and subsurface data are being used to determine the extent and depositional environment of each parasequence, and the nature of the contacts with adjacent rocks or flow units. For the second field season, detailed geological and petrophysical characterization of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir, is continuing at selected case-study areas.
Date: July 28, 1995
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Technical progress report, October 1--December 1997

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three-dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. Two activities continued this quarter as part of the geological and petrophysical characterization of the fluvial-deltaic Ferron Sandstone and are described within: (1) regional stratigraphic interpretation and (2) technology transfer.
Date: January 1, 1998
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic resevoir. Quarterly report, October 1, 1996--December 31, 1996

Description: The objective of this project is to develop a comprehensive, interdisciplinary, and quantitative characterization of a fluvial-deltaic reservoir which will allow realistic inter-well and reservoir-scale modeling to be constructed for improved oil-field development in similar reservoirs world-wide. The geological and petrophysical properties of the Cretaceous Ferron Sandstone in east-central Utah will be quantitatively determined. Both new and existing data will be integrated into a three dimensional representation of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project.
Date: March 1, 1997
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Final technical progress report, October 1--December 31, 1995

Description: The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meeting, and publication in newsletters and various technical or trade journals. Five activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) regional facies evaluation, (2) evaluation of outcrop analogues, (3) field-scale geologic analysis, (4) reservoir analysis, and (5) technology transfer.
Date: January 15, 1996
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, July 1--September 30, 1995

Description: The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals. Four activities continued this quarter as part of the geological and reservoir characterization of carbonate mound buildups in the Paradox basin: (1) field studies, (2) development well completion operations, (3) reservoir analysis and modeling, and (4) technology transfer. This paper reviews the status.
Date: December 1, 1995
Creator: Allison, M.L.
Partner: UNT Libraries Government Documents Department

Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Annual report, October 1, 1994--September 30, 1995

Description: The Bluebell field produces from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated deltaic lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then applying an acid-fracture stimulation treatment to the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. The study identified reservoir characteristics of beds that have the greatest long-term production potential.
Date: May 1, 1996
Creator: Allison, M.L. & Morgan, C.D.
Partner: UNT Libraries Government Documents Department

Improved CO sub 2 enhanced oil recovery -- Mobility control by in-situ chemical precipitation

Description: The overall objective of this study has been to evaluate the feasibility of chemical precipitation to improve CO{sub 2} sweep efficiency and mobility control. The laboratory experiments have indicated that carbonate precipitation can alter the permeability of the core samples under reservoir conditions. Furthermore, the relative permeability measurements have revealed that precipitation reduces the gas permeability in favor of liquid permeability. This indicates that precipitation is occurring preferentially in the larger pores. Additional experimental work with a series of connected cores have indicated that the permeability profile can be successfully modified. However, Ph control plays a critical role in propagation of the chemical precipitation reaction. A numerical reservoir model has been utilized to evaluate the effects of permeability heterogeneity and permeability modification on the CO{sub 2} sweep efficiency. The computer simulation results indicate that the permeability profile modification can significantly enhance CO{sub 2} vertical and horizontal sweep efficiencies. The scoping studies with the model have further revealed that only a fraction of high permeability zones need to be altered to achieve sweep efficiency enhancement. 64 refs., 30 figs., 16 tabs.
Date: June 1, 1991
Creator: Ameri, S.; Aminian, K.; Wasson, J.A. & Durham, D.L.
Partner: UNT Libraries Government Documents Department

Controlled sample program publication No. 1: characterization of rock samples.

Description: A description is presented of the methodology used and the geologic parameters measured on several rocks which are being used in round-robin laboratory and nuclide adsorption methodology experiments. Presently investigators from various laboratories are determining nuclide distribution coefficients utilizing numerous experimental techniques. Unfortunately, it appears that often the resultant data are dependent not only on the type of groundwater and rock utilized, but also on the experimentor or method used. The Controlled Sample Program is a WISAP (Waste Isolation Safety Assessment Program) attempt to resolve the apparent method and dependencies and to identify individual experimenter's bias. The rock samples characterized in an interlaboratory Kd methodology comparison program include Westerly granite, Argillaceous shale, Oolitic limestone, Sentinel Gap basalt, Conasauga shale, Climax Stock granite, anhydrite, Magenta dolomite and Culebra dolomite. Techniques used in the characterization include whole rock chemical analysis, X-ray diffraction, optical examination, electron microprobe elemental mapping, and chemical analysis of specific mineral phases. Surface areas were determined by the B.E.T. and ethylene glycol sorption methods. Cation exchange capacities were determined with /sup 85/Sr, but were of questionable value for the high calcium rocks. A quantitative mineralogy was also estimated for each rock. Characteristics which have the potential of strongly affecting radionuclide Kd values such as the presence of sulfides, water-soluble, pH-buffering carbonates, glass, and ferrous iron were listed for each rock sample.
Date: October 1978
Creator: Ames, L. L.
Partner: UNT Libraries Government Documents Department

Stochastic method for modeling fluid displacement in petroleum reservoirs

Description: In the attempt to achieve optimal recovery of petroleum from a reservoir, it is usually necessary to model numerically the fluid displacements within the reservoir. These displacements often involve the propagation of steep fronts, such as those between different fluids or between regions of differing chemical concentrations. Such fronts generally pose difficulty for numerical methods, the overcoming of which has stimulated the development of new methods in recent years. We discuss our recent work on one such method, the random choice method, which has the inherent capability of following even perfectly sharp fronts. The use of the method is illustrated for multi-dimensional, two-phase, immiscible porous flow, including the effects of capillary pressure and of gravity.
Date: September 1, 1980
Creator: Anderson, C. & Concus, P.
Partner: UNT Libraries Government Documents Department