1,576 Matching Results

Search Results

Advanced search parameters have been applied.

Reduction of pertechnetate by acetohydroxamic acid: Formation of [TcNO(AHA)2(H2O)]+ and implications for the UREX process.

Description: Reductive nitrosylation and complexation of ammonium pertechnetate by acetohydroxamic acid has been achieved in aqueous nitric and perchloric acid solutions. The kinetics of the reaction depend on the relative concentrations of the reaction components and are accelerated at higher temperatures. The reaction does not occur unless conditions are acidic. Analysis of the x-ray absorption fine structure spectroscopic data is consistent with a pseudo-octahedral geometry with the linear Tc-N-O bond typical of technetium nitrosyl compounds, and electron spin resonance spectroscopy is consistent with a the d{sup 5} Tc(II) nitrosyl complex. The nitrosyl source is generally AHA, but may be augmented by products of reaction with nitric acid. The resulting low-valency trans-aquonitrosyl(diacetohydroxamic)-technetium(II) complex (1) is highly soluble in water, extremely hydrophilic, and is not extracted by tri-n-butylphosphate in a dodecane diluent. Its extraction properties are not pH-dependent; titration studies indicate a single species from pH 4.5 down to -0.6 (calculated). This molecule is resistant to oxidation by H{sub 2}O{sub 2}, even at high pH, and can undergo substitution to form other technetium nitrosyl complexes. The formation of 1 may strongly impact the fate of technetium in the nuclear fuel cycle.
Date: February 26, 2008
Creator: 1Harry Reid Center for Environmental Studies, Nuclear Science and Technology Division, University of Nevada, Las Vegas, Las Vegas, NV, 89154-4006; Gong, Cynthia-May S; Poineau, Frederic; Lukens, Wayne W & Czerwinski, Kenneth R.
Partner: UNT Libraries Government Documents Department

Onset and Saturation of Ion Heating by Odd-parity Rotating-magnetic-fields in a Field-reversed Configuration

Description: Heating of figure-8 ions by odd-parity rotating magnetic fields (RMFο) applied to an elongated field-reversed configuration (FRC) is investigated. The largest energy gain occurs at resonances (s ≡ ω(sub)R⁄ω) of the RMFο frequency, ω(sub)R, with the figure-8 orbital frequency, ω, and is proportional to s^2 for s – even resonances and to s for s – odd resonances. The threshold for the transition from regular to stochastic orbits explains both the onset and saturation of heating. The FRC magnetic geometry lowers the threshold for heating below that in the tokamak by an order of magnitude.
Date: November 1, 2005
Creator: A.S. Landsman, S.A. Cohen, A.H. Glasser
Partner: UNT Libraries Government Documents Department

Hot dry rock geothermal reservoir engineering

Description: Two wells, GT-2 and EE-1, were originally drilled to a depth of 9600 ft (2.93 km) and 10,000 ft (3.05 km), respectively, and, after some difficulties, including redrilling of the bottom portion of GT-2, a good fracture connection was made between EE-1 and GT-2B, as the modified GT-2 was called. The circulation system was studied extensively for the purpose of establishing a number of fracture properties. Techniques were developed to determine orientation, geometry, heat exchange area, volume, flow impedance and impedance distribution. A much larger fracture system was then created from a depth of 9620 ft (2.93 km) in EE-1. The techniques used and results obtained in the study of the new and old fracture systems are discussed. (MHR)
Date: January 1, 1980
Creator: Aamodt, R.L.
Partner: UNT Libraries Government Documents Department

Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1

Description: Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratory’s Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 – 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known ...
Date: October 1, 2005
Creator: Abbott, M. L.
Partner: UNT Libraries Government Documents Department

Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

Description: We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is &lt; 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.
Date: November 30, 2011
Creator: Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. et al.
Partner: UNT Libraries Government Documents Department

Generalization of Spatial Channel Theory to Three-Dimensional x-y-z Transport Computations

Description: Spatial channel theory, initially introduced in 1977 by M. L. Williams and colleagues at ORNL, is a powerful tool for shield design optimization. It focuses on so called ''contributon'' flux and current of particles (a fraction of the total of neutrons, photons, etc.) which contribute directly or through their progeny to a pre-specified response, such as a detector reading, dose rate, reaction rate, etc., at certain locations of interest. Particles that do not contribute directly or indirectly to the pre-specified response, such as particles that are absorbed or leak out, are ignored. Contributon fluxes and currents are computed based on combined forward and adjoint transport solutions. The initial concepts were considerably improved by Abu-Shumays, Selva, and Shure by introducing steam functions and response flow functions. Plots of such functions provide both qualitative and quantitative information on dominant particle flow paths and identify locations within a shield configuration that are important in contributing to the response of interest. Previous work was restricted to two dimensional (2-D) x-y rectangular and r-z cylindrical geometries. This paper generalizes previous work to three-dimensional x-y-z geometry, since it is now practical to solve realistic 3-D problems with multidimensional transport programs. As in previous work, new analytic expressions are provided for folding spherical harmonics representations of forward and adjoint transport flux solutions. As a result, the main integrals involve in spatial channel theory are computed exactly and more efficiently than by numerical quadrature. The analogy with incompressible fluid flow is also applied to obtain visual qualitative and quantitative measures of important streaming paths that could prove vital for shield design optimization. Illustrative examples are provided. The connection between the current paper and the excellent work completed by M. L. Williams in 1991 is also discussed.
Date: March 12, 2002
Creator: Abu-Shumays, I. K.; Hunter, M. A.; Martz, R. L. & Risner, J. M.
Partner: UNT Libraries Government Documents Department

HCCI Combustion: Analysis and Experiments

Description: Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.
Date: May 14, 2001
Creator: Aceves, Salvador M.; Flowers, Daniel L.; Martinez-Frias, Joel; Smith, J. Ray; Dibble, Robert; Au, Michael et al.
Partner: UNT Libraries Government Documents Department

Fractal analysis of pressure transients in the Geysers Geothermal Field

Description: The conventionally accepted models for the interpretation of pressure transient tests in naturally fractured reservoirs usually involve simplistic assumptions regarding the geometry and transport properties of the fractured medium. Many single well tests in this type of reservoirs fail to show the predicted behavior for dual or triple porosity or permeability systems and cannot be explained by these models. This paper describes the application of a new model based on a fractal interpretation of the fractured medium. The approach, discussed elsewhere [2], [6], is applied to field data from The Geysers Geothermal Field. The objective is to present an alternative interpretation to well tests that characterizes the fractured medium in a manner more consistent with other field evidence. The novel insight gained from fractal geometry allows the identification of important characteristics of the fracture structure that feeds a particular well. Some simple models are also presented that match the field transient results.
Date: January 1, 1992
Creator: Acuna, J.A.; Ershaghi, I. & Yortsos, Y.C.
Partner: UNT Libraries Government Documents Department

Hadronization geometry and charge-dependent two-particlecorrelation on momentum subspace (eta, phi) in Au-Au collisions atsqrt(sNN) = 130 GeV

Description: We present the first measurements of charge-dependent two-particle correlations on momentum-space difference variables {eta}{sub 1}-{eta}{sub 2} (pseudorapidity) and {phi}{sub 1}-{phi}{sub 2} (azimuth) for primary charged hadrons with transverse momentum 0.15 {le} p{sub t} {le} 2 GeV/c and |{eta}| {le} 1.3 from Au-Au collisions at {radical}s{sub NN} = 130 GeV. We observe correlation structures not predicted by theory but consistent with evolution of hadron emission geometry with increasing centrality from one-dimensional fragmentation of color strings to higher-dimensional fragmentation of a hadron-opaque bulk medium.
Date: September 23, 2004
Creator: Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson,B.D.; Arkhipkin, D. et al.
Partner: UNT Libraries Government Documents Department

Flaw location and characterization in anisotropic materials by ultrasonic spectral analysis

Description: A method of quantitatively determining size and location of flaws in anisotropic materials such as stainless steel welds is described. In previous work, it was shown that spectral analysis of a broad band ultrasonic pulse scattered from a defect can be used to determine size and orientation in isotropic materials if the velocity of sound in the material is known. In an anisotropic structural material (stainless steel weld, centrifugal cast pipe), the velocity (both shear and longitudinal) is direction-dependent. When anisotropy is not taken into account, defect location and defect size estimation is misjudged. It will be shown that the effect of this structural variation in materials must be considered to obtain the correct size and location of defects by frequency analysis. A theoretical calculation, including anisotropy, of the scattered field from defects will also be presented.
Date: January 1, 1978
Creator: Adler, L.; Cook, K.V.; Simpson, W.A. & Lewis, D.K.
Partner: UNT Libraries Government Documents Department

Finite Cosmology and a CMB Cold Spot

Description: The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.
Date: March 20, 2006
Creator: Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.; /SLAC; Overduin, J.M. & /Stanford U., HEPL
Partner: UNT Libraries Government Documents Department

Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

Description: The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.
Date: December 31, 2006
Creator: Adler, Stuart; Dunyushkina, L.; Huff, S.; Lu, Y. & Wilson, J.
Partner: UNT Libraries Government Documents Department

Geometric transitions and D-term SUSY breaking

Description: We propose a new way of using geometric transitions to study metastable vacua in string theory and certain confining gauge theories. The gauge theories in question are N=2 supersymmetric theories deformed to N=1 by superpotential terms. We first geometrically engineer supersymmetry-breaking vacua by wrapping D5 branes on rigid 2-cycles in noncompact Calabi-Yau geometries, such that the central charges of the branes are misaligned. In a limit of slightly misaligned charges, this has a gauge theory description, where supersymmetry is broken by Fayet-Iliopoulos D-terms. Geometric transitions relate these configurations to dual Calabi-Yaus with fluxes, where H_RR, H_NS and dJ are all nonvanishing. We argue that the dual geometry can be effectively used to study the resulting non-supersymmetric, confining vacua
Date: November 5, 2007
Creator: Aganagic, Mina; Aganagic, Mina & Beem, Christopher
Partner: UNT Libraries Government Documents Department

Geometric metastability, quivers and holography

Description: We use large N duality to study brane/anti-brane configurations on a class of Calabi-Yau manifolds. With only branes present, the Calabi-Yau manifolds in question give rise to N=2 ADE quiver theories deformed by superpotential terms. We show that the large N duality conjecture of hep-th/0610249 reproduces correctly the known qualitative features of the brane/anti-brane physics. In the supersymmetric case, the gauge theories have Seiberg dualities which are represented as flops in the geometry. Moreover, the holographic dual geometry encodes the whole RG flow of the gauge theory. In the non-supersymmetric case, the large N duality predicts that the brane/anti-brane theories also enjoy such dualities, and allows one to pick out the good description at a given energy scale.
Date: September 6, 2007
Creator: Aganagic, Mina; Aganagic, Mina; Beem, Christopher & Freivogel, Ben
Partner: UNT Libraries Government Documents Department

Geometrically induced metastability and holography

Description: We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the&#39;t Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.
Date: October 23, 2006
Creator: Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye & Vafa, Cumrun
Partner: UNT Libraries Government Documents Department

Optimization of the Transport Shield for Neutrinoless Double Beta-decay Enriched Germanium

Description: This document presents results of an investigation of the material and geometry choice for the transport shield of germanium, the active detector material used in 76Ge neutrinoless double beta decay searches. The objective of this work is to select the optimal material and geometry to minimize cosmogenic production of radioactive isotopes in the germanium material. The design of such a shield is based on the calculation of the cosmogenic production rate of isotopes that are known to cause interfering backgrounds in 76Ge neutrinoless double beta decay searches.
Date: April 15, 2012
Creator: Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Reid, Douglas J. & Fast, James E.
Partner: UNT Libraries Government Documents Department

Testing and modeling of seepage into underground openings in aheterogeneous fracture system at Yucca Mountain, Nevada

Description: We discuss field activities designed to characterize seepage into an underground opening at the potential site for geologic storage of high-level radioactive waste (HLRW) at Yucca Mountain, Nevada, and the use of these data for development and calibration of a model for predicting seepage into planned HLRW emplacement drifts. Air-injection tests were conducted to characterize the permeability of the fractured rock, and liquid-release tests (LRTs) were conducted and seepage monitored to characterize the seepage-relevant properties of the fractured rock. Both air-injection and liquid-release tests were performed in the same borehole intervals, located above the underground openings. For modeling, three-dimensional, heterogeneous permeability fields were generated, conditioned on the air-permeability data. The initial seepage data collected were used to calibrate the model and test the appropriateness of the modeling approach. A capillary-strength parameter and porosity were the model parameters selected for estimation by data inversion. However, due to the short-term nature of the initial data, the inversion process was unable to independently determine the capillary strength and porosity of the fractured rock. Subsequent seepage data collection focused on longer-term tests, a representative selection of which was used for data inversion. Field observations also played a key role by identifying factors such as evaporation and ceiling geometry that can enhance or reduce seepage. These observations help guide future test and model development by ensuring that relevant processes that influence seepage are identified, characterized, and incorporated into the model, thus increasing confidence in the parameter estimates. It is this iterative and collaborative approach to field testing and modeling, and the feedback mechanisms of field-test-methodology and model review and revision, that has been employed to continuously improve the scientific quality of the study. Initiation of modeling as soon as the first liquid-release data were available, review of the models with the field-testing team, and feedback ...
Date: March 25, 2002
Creator: Ahlers, C. F.; Trautz, R. C.; Cook, P. J. & Finsterle, S.
Partner: UNT Libraries Government Documents Department

Transient diffusion of radionuclides from a cylindrical waste solid into fractured porous rock

Description: This paper presents the numerical results of an analytical study for mass transfer and transport of radionuclides released from a cylindrical waste solid into water-saturated fractured porous rock. The purposes of this study are (1) to predict the diffusive mass flux from a cylindrical waste solid into a planar fracture and the surrounding rock matrix for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion and (2) to investigate the effects of cylindrical geometry and of multidimensional matrix diffusion including diffusion in the directions parallel to the fracture plane. In the paper are presented the derivation of an analytical solution for the time-dependent mass transfer from the cylinder for low-flow conditions and computer-code implementation and numerical results. The problem was first proposed and solved analytically by Chambre. Numerical results are shown for (1) the diffusive mass fluxes from the cylindrical waste solid into the fracture and into the rock matrix, (2) the diffusive mass flux across the rock/fracture interface, and (3) the instantaneous concentration isopleths in the fracture and in the rock matrix. Comparison of the present cylindrical model with previous planar models, wherein contaminant was assumed to be released only into the fracture and diffusion in the rock matrix was assumed to be one-dimensional perpendicular to the fracture plane, shows that the cylindrical model is more conservative than the planar models with respect to the mass transfer from the source into the fracture and with respect to the far-field transport, provided that diffusion is dominant in the fracture. 21 refs., 10 figs., 3 tabs.
Date: September 1, 1990
Creator: Ahn, J. (Tokyo Univ. (Japan). Faculty of Engineering); Chambre, P.L. & Pigford, T.H. (California Univ., Berkeley, CA (USA). Dept. of Nuclear Engineering Lawrence Berkeley Lab., CA (USA))
Partner: UNT Libraries Government Documents Department

Large batch dimensional metrology demonstrated in the example of a LIGA fabricated spring.

Description: Deep x-ray lithography in combination with electroforming is capable of producing high precision metal parts in small lot series. This study deals with a high aspect ratio structure with overall dimensions on the order of 10 mm x 7 mm x 1.5 mm, with the smallest line width being 150 {micro}m. The lateral deviation from the design is to be kept to a minimum, preferably below 5 {micro}m. To ensure adequate quality control, a semi-automated metrology technique has been established to measure all parts. While the paper will give a brief overview of all involved techniques, it focuses on the method to measure the top and bottom of the parts and the top of geometries following the process. The instrument used is a View Engineering Voyager V6x12 microscope, which is fully programmable. The microscope allows direct measurement of geometries but also is capable of saving all captured data as point clouds. These point clouds play a central role when evaluating part geometry. After measuring the part, the point cloud is compared to the computer aided design (CAD) contour of the part, using a commercially available software package. The challenge of proper edge lighting on a nickel alloy part is evaluated by varying lighting conditions systematically. Results of two conditions are presented along with a set of optimized parameters. With the introduced set of tools, process flow can be monitored by measuring geometries, e.g. linewidths in every step of the process line. An example for such analysis is given. After delivery of a large batch of parts, extensive numbers of datasets were available allowing the evaluation of the variation of part geometries. Discussed in detail is the deviation from part top to part bottom geometries indicating swelling of the PMMA mold in the electroplating bath.
Date: April 1, 2004
Creator: Aigeldinger, Georg; Skala, Dawn M. & Ceremuga, Joseph T.
Partner: UNT Libraries Government Documents Department

Hiking the valleys of quatum chemistry

Description: This thesis is concerned with both the application and the extension of quantum chemical methods. Each chapter of the thesis represents a paper that has been published in or will be submitted to a scientific journal. The first three chapters of this thesis describe contributions made to chemistry through the use of quantum chemical methods, while the final two chapters illustrate the development of new methods. Chapter 2 and Chapter 3 characterize a study of the electronic structure and magnetic properties of homodinuclear titanium(III) complexes, in order to determine trends related to their potential use as molecular magnets. Chapter 2 focuses on hydride and halide bridging and terminal ligands, while Chapter 3 explores bridging ligands from other groups in the periodic table. Chapter 4 portrays a study of the solvation of glycine. Microsolvation and continuum solvation approaches are investigated in order to study the structures of small glycine-water clusters and determine the energy difference between the zwitterionic and nonionized forms of glycine, the simplest amino acid. Chapters 5 and 6 describe the implementation of analytic gradients, which are required for efficient molecular geometry optimizations, for two open-shell second-order perturbation theory methods. Chapter 5 discusses gradients for unrestricted Moeller-Plesset perturbation theory, and Chapter 6 describes gradients for Z-averaged perturbation theory.
Date: August 1, 2005
Creator: Aikens, Christine Marie
Partner: UNT Libraries Government Documents Department

Optimal experiment design for time-lapse traveltime tomography

Description: Geophysical monitoring techniques offer the only noninvasive approach capable of assessing both the spatial and temporal dynamics of subsurface fluid processes. Increasingly, permanent sensor arrays in boreholes and on the ocean floor are being deployed to improve the repeatability and increase the temporal sampling of monitoring surveys. Because permanent arrays require a large up-front capital investment and are difficult (or impossible) to re-configure once installed, a premium is placed on selecting a geometry capable of imaging the desired target at minimum cost. We present a simple approach to optimizing downhole sensor configurations for monitoring experiments making use of differential seismic traveltimes. In our case, we use a design quality metric based on the accuracy of tomographic reconstructions for a suite of imaging targets. By not requiring an explicit singular value decomposition of the forward operator, evaluation of this objective function scales to problems with a large number of unknowns. We also restrict the design problem by recasting the array geometry into a low dimensional form more suitable for optimization at a reasonable computational cost. We test two search algorithms on the design problem: the Nelder-Mead downhill simplex method and the Multilevel Coordinate Search algorithm. The algorithm is tested for four crosswell acquisition scenarios relevant to continuous seismic monitoring, a two parameter array optimization, several scenarios involving four parameter length/offset optimizations, and a comparison of optimal multi-source designs. In the last case, we also examine trade-offs between source sparsity and the quality of tomographic reconstructions. One general observation is that asymmetric array lengths improve localized image quality in crosswell experiments with a small number of sources and a large number of receivers. Preliminary results also suggest that high-quality differential images can be generated using only a small number of optimally positioned sources.
Date: October 1, 2009
Creator: Ajo-Franklin, J.B.
Partner: UNT Libraries Government Documents Department