32 Matching Results

Search Results

Advanced search parameters have been applied.

Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model

Description: In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.
Date: August 1, 2013
Creator: Agarwal, Varija & Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Multiphysics Integrated Coupling Environment (MICE) User Manual

Description: The complex, multi-part nature of waste glass melters used in nuclear waste vitrification poses significant modeling challenges. The focus of this project has been to couple a 1D MATLAB model of the cold cap region within a melter with a 3D STAR-CCM+ model of the melter itself. The Multiphysics Integrated Coupling Environment (MICE) has been developed to create a cohesive simulation of a waste glass melter that accurately represents the cold cap. The one-dimensional mathematical model of the cold cap uses material properties, axial heat, and mass fluxes to obtain a temperature profile for the cold cap, the region where feed-to-glass conversion occurs. The results from Matlab are used to update simulation data in the three-dimensional STAR-CCM+ model so that the cold cap is appropriately incorporated into the 3D simulation. The two processes are linked through ModelCenter integration software using time steps that are specified for each process. Data is to be exchanged circularly between the two models, as the inputs and outputs of each model depend on the other.
Date: August 1, 2013
Creator: Agarwal, Varija & Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Computational Flow Predictions for the Lower Plenum of a High-Temperature, Gas-Cooled Reactor

Description: Advanced gas-cooled reactors offer the potential advantage of higher efficiency and enhanced safety over present day nuclear reactors. Accurate simulation models of these Generation IV reactors are necessary for design and licensing. One design under consideration by the Very High Temperature Reactor (VHTR) program is a modular, prismatic gas-cooled reactor. In this reactor, the lower plenum region may experience locally high temperatures that can adversely impact the plant’s structural integrity. Since existing system analysis codes cannot capture the complex flow effects occurring in the lower plenum, computational fluid dynamics (CFD) codes are being employed to model these flows [1]. The goal of the present study is to validate the CFD calculations using experimental data.
Date: November 1, 2006
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

HAZARDS OF THERMAL EXPANSION FOR RADIOLOGICAL CONTAINER ENGULFED IN FIRE

Description: Fire accidents pose a serious threat to nuclear facilities. It is imperative that transport casks or shielded containers designed to transport/contain radiological materials have the ability to withstand a hypothetical fire. A numerical simulation was performed for a shielded container constructed of stainless steel and lead engulfed in a hypothetical fire as outlined by 10 CFR §71.73. The purpose of this analysis was to determine the thermal response of the container during and after the fire. The thermal model shows that after 30 minutes of fire, the stainless steel will maintain its integrity and not melt. However, the lead shielding will melt since its temperature exceeds the melting point. Due to the method of construction of the container under consideration, ample void space must be provided to allow for thermal expansion of the lead upon heating and melting, so as to not overstress the weldment.
Date: May 1, 2013
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

Description: The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.
Date: September 1, 2013
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

Description: A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.
Date: July 1, 2009
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment

Description: This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.
Date: September 1, 2009
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR

Description: Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.
Date: June 1, 2008
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop

Description: This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.
Date: November 1, 2012
Creator: Guillen, Donna Post
Partner: UNT Libraries Government Documents Department

THERMAL HYDRAULIC ANALYSIS OF A GAS TEST LOOP SYSTEM

Description: This paper discusses thermal hydraulic calculations for a Gas Test Loop (GTL) system designed to provide a high intensity fast-flux irradiation environment for testing fuels and materials for advanced concept nuclear reactors. To assess the performance of candidate reactor fuels, these fuels must be irradiated under actual fast reactor flux conditions and operating environments, preferably in an existing irradiation facility [1]. Potential users of the GTL include the Generation IV Reactor Program, the Advanced Fuel Cycle Initiative and Space Nuclear Programs.
Date: November 1, 2005
Creator: Guillen, Donna Post & Fisher, James E.
Partner: UNT Libraries Government Documents Department

Effect of Materials on the Autoignition of Cyclopentane

Description: Cyclopentane, a flammable hydrocarbon, is being considered as a working fluid for waste heat recovery applications. Experiments were conducted to determine the ignition delay time (IDT) of cyclopentane using an Ignition Quality Test (IQT) device. Two sets of experiments were conducted per ASTM D6890 (with exception to charge pressure and temperature) to determine ignition delay of the fuel at atmospheric pressure for normal air ({approx}21% oxygen) and vitiated air (13.3% oxygen) at a temperature of 530 C. Operation of the IQT device at a much lower pressure (1 bar) than normal operation (21.1 bar) led to very rich conditions and wetting of the stainless steel chamber walls. Catalytic effects produced small IDTs. Experiments were repeated with a modified injector to prevent wall wetting, resulting in average IDTs that are substantially longer.
Date: March 1, 2012
Creator: Guillen, Donna Post & Walls, Mark
Partner: UNT Libraries Government Documents Department

REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

Description: The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.
Date: November 1, 2007
Creator: Guillen, Donna Post & Wendt, Daniel S.
Partner: UNT Libraries Government Documents Department

Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process

Description: This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.
Date: May 1, 2005
Creator: Guillen, Donna Post & Williams, Brian G.
Partner: UNT Libraries Government Documents Department

Specification of Surface Roughness for Hydraulic Flow Test Plates

Description: A study was performed to determine the surface roughness of the corrosion layer on aluminum clad booster fuel plates for the proposed Gas Test Loop (GTL) system to be incorporated into the Advanced Test Reactor (ATR) at the Idaho National Laboratory. A layer of boehmite (a crystalline, non-porous gamma-alumina hydrate) is typically pre-formed on the surface of the fuel cladding prior to exposure to reactor operation to prevent the uncontrolled buildup of corrosion product on the surface. A representative sample coupon autoclaved with the ATR driver fuel to produce the boehmite layer was analyzed using optical profilometry to determine the mean surface roughness, a parameter that can have significant impact on the coolant flow past the fuel plates. This information was used to specify the surface finish of mockup fuel plates for a hydraulic flow test model. The purpose of the flow test is to obtain loss coefficients describing the resistance of the coolant flow paths, which are necessary for accurate thermal hydraulic analyses of the water-cooled booster fuel assembly. It is recommended that the surface roughness of the boehmite layer on the fuel cladding be replicated for the flow test. While it is very important to know the order of magnitude of the surface roughness, this value does not need to be matched exactly. Maintaining a reasonable dimensional tolerance for the surface finish on each side of the 12 mockup fuel plates would ensure relative uniformity in the flow among the four coolant channels. Results obtained from thermal hydraulic analyses indicate that ±15% deviation from a surface finish (i.e., Ra) of 0.53 ìm would have a minimal effect on coolant temperature, coolant flow rate, and fuel temperature.
Date: May 1, 2006
Creator: Guillen, Donna Post & Yoder, Timothy S.
Partner: UNT Libraries Government Documents Department

Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

Description: This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed ...
Date: September 1, 2013
Creator: Guillen, Donna Post & Zia, Jalal
Partner: UNT Libraries Government Documents Department

SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

Description: The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.
Date: May 1, 2005
Creator: Guillen, Donna Post; D. J. Varacalle, Jr.; Deason, D.; Rhodaberger, W. & Sampson, E.
Partner: UNT Libraries Government Documents Department

PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

Description: The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat ...
Date: November 1, 2010
Creator: Guillen, Donna Post; Grimmett, Tami; Gandrik, Anastasia M. & Antal, Steven P.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

Description: The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The model includes heat ...
Date: September 1, 2010
Creator: Guillen, Donna Post; Grimmett, Tami; Gribik, Anastasia M. & Antal, Steven P.
Partner: UNT Libraries Government Documents Department

Development of a Direct Evaporator for the Organic Rankine Cycle

Description: This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.
Date: February 1, 2011
Creator: Guillen, Donna Post; Klockow, Helge; Lehar, Matthew; Freund, Sebastian & Jackson, Jennifer
Partner: UNT Libraries Government Documents Department

RESTRUCTURING RELAP5-3D FOR NEXT GENERATION NUCLEAR PLANT ANALYSIS

Description: RELAP5-3D is used worldwide for analyzing nuclear reactors under both operational transients and postulated accident conditions. Development of the RELAP code series began in 1975 and since that time the code has been continuously improved, enhanced, verified and validated [1]. Since RELAP5-3D will continue to be the premier thermal hydraulics tool well into the future, it is necessary to modernize the code to accommodate the incorporation of additional capabilities to support the development of the next generation of nuclear reactors [2]. This paper discusses the reengineering of RELAP5-3D into structured code.
Date: June 1, 2006
Creator: Guillen, Donna Post; Mesina, George L. & Hykes, Joshua M.
Partner: UNT Libraries Government Documents Department

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP

Description: The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.
Date: February 27, 2003
Creator: Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie & Lebow, Scott
Partner: UNT Libraries Government Documents Department

In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

Description: A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.
Date: June 1, 2010
Creator: Guillen, Donna Post; Porter, Douglas L.; Parry, James R. & Ban, Heng
Partner: UNT Libraries Government Documents Department

THERMAL PREDICTIONS OF NEW COMPOSITE MATERIAL DURING INPILE TESTING

Description: An inpile experiment is currently underway wherein specimens comprised of a newly developed material are being irradiated at Idaho National Laboratory's Advanced Test Reactor (ATR) in conjunction with Utah State University under the auspices of the ATR National Scientific User Facility. This paper provides the thermophysical properties of this new material measured prior to irradiation. After the irradiation campaign is complete, the thermophysical properties of the specimens will be measured and compared to the preirradiation values. A finite-element model was constructed to predict bounding specimen temperatures during irradiation. Results from the thermal hydraulic modeling, including the steady-state temperatures of the specimens within sealed capsules, are presented. After the irradiation campaign is completed, best-estimate thermal predictions will be performed for the individual specimens using the actual as-run irradiation power levels.
Date: September 1, 2011
Creator: Guillen, Donna Post; Swank, W. David; Ban, Heng; Harris, Kurt & Zabriskie, Adam
Partner: UNT Libraries Government Documents Department

REVIEW OF EXPERIMENTAL CAPABILITIES AND HYDRODYNAMIC DATA FOR VALIDATION OF CFD-BASED PREDICTIONS FOR SLURRY BUBBLE COLUMN REACTORS

Description: The purpose of this paper is to document the review of several open-literature sources of both experimental capabilities and published hydrodynamic data to aid in the validation of a Computational Fluid Dynamics (CFD) based model of a slurry bubble column (SBC). The review included searching the Web of Science, ISI Proceedings, and Inspec databases, internet searches as well as other open literature sources. The goal of this study was to identify available experimental facilities and relevant data. Integral (i.e., pertaining to the SBC system), as well as fundamental (i.e., separate effects are considered), data are included in the scope of this effort. The fundamental data is needed to validate the individual mechanistic models or closure laws used in a Computational Multiphase Fluid Dynamics (CMFD) simulation of a SBC. The fundamental data is generally focused on simple geometries (i.e., flow between parallel plates or cylindrical pipes) or custom-designed tests to focus on selected interfacial phenomena. Integral data covers the operation of a SBC as a system with coupled effects. This work highlights selected experimental capabilities and data for the purpose of SBC model validation, and is not meant to be an exhaustive summary.
Date: November 1, 2007
Creator: Guillen, Donna Post; Wendt, Daniel S.; Antal, Steven P. & Podowski, Michael Z.
Partner: UNT Libraries Government Documents Department