1,282 Matching Results

Search Results

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

Description: A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.
Date: July 8, 2012
Creator: A., Lukhanin; U., Rohatgi; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O et al.
Partner: UNT Libraries Government Documents Department

On possible use of bent crystal to improve Tevatron beam scraping

Description: A possibility to improve the Tevatron beam halo scraping using a bent channeling crystal instead of a thin scattering primary collimator is studied. To evaluate the efficiency of the system, realistic simulations have been performed using the CATCH and STRUCT Monte Carlo codes. It is shown that the scraping efficiency can be increased and the accelerator-related backgrounds in the CDF and DØ collider detectors can be reduced by about one order of magnitude. Results on scraping efficiency versus thickness of amorphous layer of the crystal, crystal alignment and its length are presented.
Date: April 8, 1999
Creator: A.I. Drozhdin, N.V. Mokhov and V.M. Biryukov
Partner: UNT Libraries Government Documents Department

CRYSTALLIZATION IN MULTICOMPONENT GLASSES

Description: In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.
Date: October 8, 2009
Creator: AA, KRUGER & PR, HRMA
Partner: UNT Libraries Government Documents Department

{sup 17}O NMR investigation of oxidative degradation in polymers under gamma-irradiation

Description: The {gamma}-irradiated-oxidation of pentacontane (C{sub 50}H{sub 102}) and the polymer polyisoprene was investigated as a function of oxidation level using {sup 17}O nuclear magnetic resonance (NMR) spectroscopy. It is demonstrated that by using {sup 17}O labeled O{sub 2} gas during the {gamma}-irradiation process, details about the oxidative degradation mechanisms can be directly obtained from the analysis of the {sup 17}O NMR spectra. Production of carboxylic acids is the primary oxygen-containing functionality during the oxidation of pentacontane, while ethers and alcohols are the dominant oxidation product observed for polyisoprene. The formation of ester species during the oxidation process is very minor for both materials, with water also being produced in significant amounts during the radiolytic oxidation of polyisoprene. The ability to focus on the oxidative component of the degradation process using {sup 17}O NMR spectroscopy demonstrates the selectivity of this technique over more conventional approaches.
Date: March 8, 2000
Creator: ALAM,TODD M.; CELINA,MATHIAS C.; ASSINK,ROGER A.; CLOUGH,ROGER LEE & GILLEN,KENNETH T.
Partner: UNT Libraries Government Documents Department

Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

Description: Abstract Not Provided
Date: July 8, 2013
Creator: Aad, G & /Freiburg U. /Oklahoma U. /Barcelona, IFAE /Geneva U. /Oxford U. /Baku, Inst. Phys. /Oklahoma State U. /Michigan State U. /Tel Aviv U. /Orsay, LAL /ICTP, Trieste /INFN, Udine /Brookhaven /Hampton U. /Yale U. /INFM, Cosenza /INFN, Cosenza /Queen Mary, U. of London /Rutherford /Brandeis U. /Granada U.
Partner: UNT Libraries Government Documents Department

Fermi Large Area Telescope First Source Catalog

Description: Abstract Not Provided
Date: July 8, 2013
Creator: Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. et al.
Partner: UNT Libraries Government Documents Department

Extracting Short Rise-Time Velocity Profiles with Digital Down-Shift Analysis of Optically Up-Converted PDV Data

Description: This work describes the digital down-shift (DDS) technique, a new method of extracting short rise-time velocity profiles in the analysis of optically up-converted PDV data. The DDS technique manipulates the PDV data by subtracting a constant velocity (i.e., the DDS velocity νDDS) from the velocity profile. DDS exploits the simple fact that the optically up-converted data ride on top of a base velocity (ν0, the apparent velocity at no motion) with a rapid rise to a high velocity (νf) of a few km/s or more. Consequently, the frequency content of the signal must describe a velocity profile that increases from ν0 to ν0 + νf. The DDS technique produces velocity reversals in the processed data before shock breakout when ν0 < νDDS < ν0 + νf. The DDS analysis process strategically selects specific DDS velocities (velocity at which the user down shifts the data) that produce anomalous reversals (maxima and/or minima), which are predictable and easy to identify in the mid-range of the data. Additional analysis determines when these maxima and minima occur. By successive application of the DDS technique and iterative analysis, velocity profiles are extracted as time as a function of velocity rather than as a function of time as it would be in a conventional velocity profile. Presented results include a description of DDS, velocity profiles extracted from laser-driven shock data with rise times of 200 ps or less, and a comparison with other techniques.
Date: September 8, 2010
Creator: Abel Diaz, Nathan Riley, Cenobio Gallegos, Matthew Teel, Michael Berninger, Thomas W. Tunnell
Partner: UNT Libraries Government Documents Department

Phase stability of laves intermetallics in stainless steel-zirconium alloys.

Description: Phase transformations occurring in a stainless steel-15 wt% zirconium (SS-15Zr) alloy were studied by in situ neutron diffraction. Neutron diffraction patterns as a function of time were obtained on alloys that were held at various elevated temperatures (1084-1275 C). As-cast SS-15Zr alloys contain ferrite, austenite, ZrFe{sub 2}-type Laves polytypes C36 and C15, and small amounts of a Fe{sub 23}Zr{sub 6}-type intermetallic. Annealing at high temperatures resulted in an increase of the Fe{sub 23}Zr{sub 6}, intermetallic content. The C15 Laves polytype is the equilibrium phase for T {le} 1230 C; C36 is the stable polytype at higher temperatures ({approximately}1275 C). Phase changes were slow for temperatures &lt;1100 C.These findings have important implications for use of the SS-15Zr alloy as a nuclear waste form.
Date: April 8, 1999
Creator: Abraham, D. P.
Partner: UNT Libraries Government Documents Department

2013 Inorganic Reaction Mechanisms Gordon Research Conference (March 3-8, 2013 - Hotel Galvez, Galveston TX)

Description: The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.
Date: December 8, 2012
Creator: Abu-Omar, Mahdi M.
Partner: UNT Libraries Government Documents Department

Scaling Properties of Hyperon Production in Au + Au Collisions at sqrt sNN = 200 GeV

Description: We present the scaling properties of Lambda, Xi, and their anti-particles produced at mid-rapidity in Au+Au collisions at RHIC at psNN = 200 GeV. The yield of multi-strange baryons per participant nucleon increases from peripheral to central collisions more rapidly than the Lambda yield, which appears to correspond to an increasing strange quark density of matter produced. The value of the strange phase space occupancy factor gamma s, obtained from a thermal model fit to the data, approaches unity for the most central collisions. We also show that the nuclear modification factors, RCP, of Lambda and Xi are consistent with each other and with that of protons in the transverse momentum range2.0&lt; pT&lt; 5.0 GeV/c. This scaling behaviour is consistent with a scenario of hadron formation from constituent quark degrees of freedom through quark recombination or coalescence.
Date: June 8, 2006
Creator: Adams, J.
Partner: UNT Libraries Government Documents Department

Photon and neutral pion production in Au+Au collisions at {radical}s{sub NN} = 130 GeV

Description: We report the first inclusive photon measurements about mid-rapidity (|y| &lt; 0.5) from {sup 197}Au + {sup 197}Au collisions at {radical}s{sub NN} = 130 GeV at RHIC. Photon pair conversions were reconstructed from electron and positron tracks measured with the Time Projection Chamber (TPC) of the STAR experiment. With this method, an energy resolution of {Delta}E/E {approx} 2% at 0.5 GeV has been achieved. Reconstructed photons have also been used to measure the transverse momentum (p{sub t}) spectra of {pi}{sup 0} mesons about mid-rapidity (|y| &lt; 1) via the {pi}{sup 0} {yields} {gamma}{gamma} decay channel. The fractional contribution of the {pi}{sup 0} {yields} {gamma}{gamma} decay to the inclusive photon spectrum decreases by 20% {+-} 5% between p{sub t} = 1.65 GeV/c and p{sub t} = 2.4 GeV/c in the most central events, indicating that relative to {pi}{sup 0} {yields} {gamma}{gamma} decay the contribution of other photon sources is substantially increasing.
Date: January 8, 2004
Creator: Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D. et al.
Partner: UNT Libraries Government Documents Department

PROJECTIZING AN OPERATING NUCLEAR FACILITY

Description: This paper will discuss the evolution of an operations-based organization to a project-based organization to facilitate successful deactivation of a major nuclear facility. It will describe the plan used for scope definition, staff reorganization, method estimation, baseline schedule development, project management training, and results of this transformation. It is a story of leadership and teamwork, pride and success. Workers at the Savannah River Site's (SRS) F Canyon Complex (FCC) started with a challenge--take all the hazardous byproducts from nearly 50 years of operations in a major, first-of-its-kind nuclear complex and safely get rid of them, leaving the facility cold, dark, dry and ready for whatever end state is ultimately determined by the United States Department of Energy (DOE). And do it in four years, with a constantly changing workforce and steadily declining funding. The goal was to reduce the overall operating staff by 93% and budget by 94%. The facilities, F Canyon and its adjoined sister, FB Line, are located at SRS, a 310-square-mile nuclear reservation near Aiken, S.C., owned by DOE and managed by Washington Group International subsidiary Washington Savannah River Company (WSRC). These facilities were supported by more than 50 surrounding buildings, whose purpose was to provide support services during operations. The radiological, chemical and industrial hazards inventory in the old buildings was significant. The historical mission at F Canyon was to extract plutonium-239 and uranium-238 from irradiated spent nuclear fuel through chemical processing. FB Line's mission included conversion of plutonium solutions into metal, characterization, stabilization and packaging, and storage of both metal and oxide forms. The plutonium metal was sent to another DOE site for use in weapons. Deactivation in F Canyon began when chemical separations activities were completed in 2002, and a cross-functional project team concept was implemented to successfully accomplish deactivation. This concept had to ...
Date: July 8, 2007
Creator: Adams, N
Partner: UNT Libraries Government Documents Department

PILOT-SCALE HYDRAULIC TESTING OF RESORCINOL FORMALDEHYDE ION EXCHANGE RESIN

Description: Savannah River National Laboratory (SRNL) performed pilot-scale hydraulic/chemical testing of spherical resorcinol formaldehyde (RF) ion exchange (IX) resin for the River Protection Project-Hanford Tank Waste Treatment & Immobilization Plant (WTP) Project. The RF resin cycle testing was conducted in two pilot-scale IX columns, 1/4 and 1/2 scale. A total of twenty-three hydraulic/chemical cycles were successfully completed on the spherical RF resin. Seven of the cycles were completed in the 12 inch IX Column and sixteen cycles were completed in the 24 inch IX Column. Hydraulic testing showed that the permeability of the RF resin remained essentially constant, with no observed trend in the reduction of the permeability as the number of cycles increased. The permeability during the pilot-scale testing was 2 1/2 times better than the design requirements of the WTP full-scale system. The permeability of the resin bed was uniform with respect to changes in bed depth. Upflow Regeneration and Simulant Introduction in the IX columns revealed another RF resin benefit; negligible radial pressures to the column walls from the swelling of resin beads. In downflow of the Regeneration and Simulant Introduction steps, the resin bed particles pack tightly together and produce higher hydraulic pressures than that found in upflow. Also, upflow Simulant Introduction produced an ideal level bed for the twenty cycles completed using upflow Simulant Introduction. Conversely, the three cycles conducted using downflow Simulant Introduction produced an uneven bed surface with erosion around the thermowells. The RF resin bed in both columns showed no tendency to form fissures or pack more densely as the number of cycles increased. Particle size measurements of the RF resin showed no indication of particle size change (for a given chemical) with cycles and essentially no fines formation. Micrographs comparing representative bead samples before and after testing indicated no change in bead ...
Date: November 8, 2006
Creator: Adamson, D
Partner: UNT Libraries Government Documents Department

Detecting data and schema changes in scientific documents

Description: Data stored in a data warehouse must be kept consistent and up-to-date with the underlying information sources. By providing the capability to identify, categorize and detect changes in these sources, only the modified data needs to be transferred and entered into the warehouse. Another alternative, periodically reloading from scratch, is obviously inefficient. When the schema of an information source changes, all components that interact with, or make use of, data originating from that source must be updated to conform to the new schema. In this paper, the authors present an approach to detecting data and schema changes in scientific documents. Scientific data is of particular interest because it is normally stored as semi-structured documents, and it incurs frequent schema updates. They address the change detection problem by detecting data and schema changes between two versions of the same semi-structured document. This paper presents a graph representation of semi-structured documents and their schema before describing their approach to detecting changes while parsing the document. It also discusses how analysis of a collection of schema changes obtained from comparing several individual can be used to detect complex schema changes.
Date: June 8, 1999
Creator: Adiwijaya, I; Critchlow, T & Musick, R
Partner: UNT Libraries Government Documents Department

Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

Description: Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.
Date: January 8, 1999
Creator: Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S. & Showalter, S.K.
Partner: UNT Libraries Government Documents Department

Bendable X-ray Optics at the ALS: Design, Tuning, Performance and Applications

Description: We review the development at the Advanced Light Source (ALS) of bendable x-ray optics widely used for focusing of beams of soft and hard x-rays. Typically, the focusing is divided in the tangential and sagittal directions into two elliptically cylindrical reflecting elements, the so-called Kirkpatrick-Baez (KB) pair [1]. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. This is in contrast to flat optics, that are simpler to manufacture and easier to measure by conventional interferometry. The figure of a flat substrate can be changed by placing torques (couples) at each end. Equal couples form a tangential cylinder, and unequal couples can approximate a tangential ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, and describe a technique developed at the ALS Optical Metrology Laboratory (OML) for optimal tuning of bendable mirrors before installation in the beamline [2]. The tuning technique adapts a method previously used to adjust bendable mirrors on synchrotron radiation beamlines [3]. However, in our case, optimal tuning of a bendable mirror is based on surface slope trace data obtained with a slope measuring instrument--in our case, the long trace profiler (LTP). We show that due to the near linearity of the bending problem, the minimal set of data, necessary for tuning of two benders, consists of only three slope traces measured before and after a single adjustment of each bending couple. We provide an algorithm that was used in dedicated software for finding optimal settings for the mirror benders. The algorithm is based on the method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired slope shape provides nearly final settings for the benders. Moreover, the characteristic ...
Date: September 8, 2008
Creator: Advanced Light Source, Lawrence Berkeley National Laboratory; Yashchuk, Valeriy V.; Church, Matthew N.; Knight, Jason W.; Kunz, Martin; MacDowell, Alastair A. et al.
Partner: UNT Libraries Government Documents Department

Texture Development During Equal Channel Angular Forging of BCC Metals

Description: Equal channel angular forging (ECAF) has been proposed as a severe plastic deformation technique for processing metals, alloys, and composites [e.g. Segal, 1995] (Fig. 1). The technique offers two capabilities of practical interest: a high degree of strain can be introduced with no change in the cross-sectional dimensions of the work-piece, hence, even greater strains can be introduced by re-inserting the work-piece for further deformation during subsequent passes through the ECAF die. Additionally, the deformation is accomplished by simple shear (like torsion of a short tube) on a plane whose orientation, with respect to prior deformations, can be controlled by varying the processing route. There is a nomenclature that has developed in the literature for the typical processing routes: A: no rotations; B{sub A}: 90 degrees CW (clockwise), 90 degrees CCW (counterclockwise), 9O degrees CW, 90 degrees CCW...; Bc: 90 degrees CW, 90 degrees CW, 90 degrees CW...; and C: 180 degrees, 18 0 degrees.... The impact of processing route on the subsequent microstructure [Ferasse, Segal, Hartwig and Goforth, 1997; Iwahashi, Horita, Nemoto and Langdon, 1996] and texture [Gibbs, Hartwig, Cornwell, Goforth and Payzant, 1998] has been the subject of numerous experimental studies.
Date: August 8, 1999
Creator: Agnew, S.R.
Partner: UNT Libraries Government Documents Department

Simple Stringy Dynamical SUSY Breaking

Description: We present simple string models which dynamically break supersymmetry without non-Abelian gauge dynamics. The Fayet model, the Polonyi model, and the O'Raifeartaigh model each arise from D-branes at a specific type of singularity. D-brane instanton effects generate the requisite exponentially small scale of supersymmetry breaking.
Date: August 8, 2007
Creator: Aharony, Ofer; /Weizmann Inst. /Stanford U., Phys. Dept. /SLAC; Kachru, Shamit; Silverstein, Eva & /Stanford U., Phys. Dept. /SLAC
Partner: UNT Libraries Government Documents Department

Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

Description: The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.
Date: September 8, 1999
Creator: Ahmed, S.; Kopasz, J. P.; Russell, B. J. & Tomlinson, H. L.
Partner: UNT Libraries Government Documents Department

Developing enabling optics finishing technologies for the National Ignition Facility

Description: Lawrence Livermore National Laboratory is in the process of constructing the National Ignition Facility, a half million square foot facility which will house a 192 beam laser system capable of generating the 2 million joules of ultraviolet light energy necessary to achieve fusion ignition with inertial targets by 2004. More than 7,000 meter class optics will need to be manufactured by LLNL`s industrial partners to construct the laser system. The components will be manufactured starting in 1998 and will be finished by 2003. In 1994 it became clear through a series of funded cost studies that, in order to fabricate such an unprecedented number of large precision optics in so short a time for the lowest possible cost, new technologies would need to be developed and new factories constructed based on those technologies. At that time, LLNL embarked on an ambitious optics finishing technology development program costing more than $6M over 3 years to develop these technologies, working with three suppliers of large precision optics. While each development program centered upon the specialties and often proprietary technologies already existing in the suppliers facility, many of the technologies required for manufacturing large precision optics at the lowest cost possible are common to two and in some cases all three efforts. Since many of the developments achieved during this program stemmed from intellectual property and trade secrets at the vendors, the program cannot be described completely in a public forum. Nevertheless, many non-proprietary advances were made during this program which the vendors are willing to share with the greater community. This presentation will describe the manufacturing process in a general sense which is used by all three of the companies under contract; Zygo Corporation, Tinsley Laboratories, and Eastman Kodak. In each of the principle process steps of shaping, grinding, polishing, figuring, and ...
Date: January 8, 1998
Creator: Aikens, D.M.; Rich, L.; Bajuk, D. & Slomba, A.
Partner: UNT Libraries Government Documents Department