97 Matching Results

Willis Library will be without power on Tuesday, August 20, 2019 from 5:00-7:00 AM CDT. All websites and web services will be down during this period.

Search Results

A Compact X-Band Linac for an X-Ray FEL

Description: With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an ...
Date: September 12, 2011
Creator: Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya et al.
Partner: UNT Libraries Government Documents Department

It's On: Early Interpretations of ATLAS Results in Jets and Missing Energy

Description: The first search for supersymmetry from ATLAS with 70 nb{sup -1} of integrated luminosity extends the Tevatron's reach for colored particles that decay into jets plus missing transverse energy. For gluinos that decay directly or through a one step cascade into the LSP and two jets, the mass range m{sub {bar g}} {le} 205 GeV is disfavored by the ATLAS searches, regardless of the mass of the LSP. In some cases the coverage extends up to m{sub {bar g}} {approx_equal} 295 GeV, already surpassing the Tevatron's reach for compressed supersymmetry spectra.
Date: August 12, 2011
Creator: Alves, Daniele S.M.; Izaguirre, Eder; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G. & /SLAC
Partner: UNT Libraries Government Documents Department

Poker Face of Inelastic Dark Matter: Prospects at Upcoming Direct Detection Experiments

Description: The XENON100 and CRESST experiments will directly test the inelastic dark matter explanation for DAMA's 8.9{sigma} anomaly. This article discusses how predictions for direct detection experiments depend on uncertainties in quenching factor measurements, the dark matter interaction with the Standard Model and the halo velocity distribution. When these uncertainties are accounted for, an order of magnitude variation is found in the number of expected events at CRESST and XENON100. The process of testing the DAMA anomaly highlights many of the challenges inherent to direct detection experiments. In addition to determining the properties of the unknown dark matter particle, direct detection experiments must also consider the unknown flux of the incident dark matter, as well as uncertainties in converting a signal from one target nucleus to another. The predictions for both the CRESST 2009 run and XENON100 2010 run show an order of magnitude uncertainty. The nuclear form factor for {sup 184}W, when combined with additional theoretical and experimental uncertainties, will likely prevent CRESST from refuting the iDM hypothesis with an exposure of {Omicron}(100 kg-d) in a model-independent manner. XENON100, on the other hand, will be able to make a definitive statement about a spin-independent, inelastically scattering dark matter candidate. Still, the CRESST 2009 data can potentially confirm iDM for a large range of parameter space. In case of a positive signal, the combined data from CRESST and XENON100 will start probing the properties of the Milky Way DM profile and the interaction of the SM with the dark matter.
Date: August 12, 2011
Creator: Alves, Daniele S.M.; Lisanti, Mariangela; /SLAC /Stanford U., Phys. Dept.; Wacker, Jay G. & /SLAC
Partner: UNT Libraries Government Documents Department

Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

Description: Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.
Date: September 12, 2011
Creator: Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R & Rademacher, M
Partner: UNT Libraries Government Documents Department

Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit

Description: Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.
Date: August 12, 2011
Creator: Analytis, J. G.; McDonald, R. D.; Riggs, S. C.; Chu, J.-H.; Boebinger, G. S. & Fisher, I. R.
Partner: UNT Libraries Government Documents Department

Dispersion in the Presence of Strong Transverse Wakefields

Description: To minimize emittance growth in a long linac, it is necessary to control the wakefields by correcting the beam orbit excursions. In addition, the particle energy is made to vary along the length of the bunch to introduce a damping, known as the BNS damping, to the beam break-up effect. In this paper, we use a two-particle model to examine the relative magnitudes of the various orbit and dispersion functions involved. The results are applied to calculate the effect of a closed orbit bump and a misaligned structure. It is shown that wake-induced dispersion is an important contribution to the beam dynamics in long linacs with strong wakefields like SLC.
Date: August 12, 2011
Creator: Assmann, Ralph & Chao, Alex
Partner: UNT Libraries Government Documents Department

Heavy octets and Tevatron signals with three or four b jets

Description: Hypothetical color-octet particles of spin 0, pair-produced at hadron colliders through their QCD coupling, may lead to final states involving three or four b jets. We analyze kinematic distributions of the 3b final state that differentiate the scalar octets from supersymmetric Higgs bosons. Studying the scalar sector that breaks an SU(3) x SU(3) gauge symmetry down to the QCD gauge group, we find that the scalar octet is resonantly produced in pairs via a spin-1 octet (coloron). A scalar octet of mass in the 140-150 GeV range can explain the nonstandard shape of the b-jet transverse energy distributions reported by the CDF Collaboration, especially when the coloron mass is slightly above twice the scalar mass. The dominant decay mode of the scalar octet is into a pair of gluons, so that the production of a pair of dijet resonances is large in this model, of about 40 pb at the Tevatron. Even when a W boson is radiated from the initial state, the inclusive cross section for producing a dijet resonance near the scalar octet mass remains sizable, around 0.15 pb.
Date: August 12, 2011
Creator: Bai, Yang; /SLAC; Dobrescu, Bogdan A. & /Fermilab
Partner: UNT Libraries Government Documents Department

LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

Description: We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3){sub 1} x SU(3){sub 2}/SU(3){sub c} coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.
Date: August 12, 2011
Creator: Bai, Yang; Hewett, JoAnne L.; Kaplan, Jared; Rizzo, Thomas G. & /SLAC
Partner: UNT Libraries Government Documents Department

Single-Sector Supersymmetry Breaking, Chirality, and Unification

Description: Calculable single-sector models provide an elegant framework for generating the flavor textures via compositeness, breaking supersymmetry, and explaining the electroweak scale. Such models may be realized naturally in supersymmetric QCD with additional gauge singlets (SSQCD), though it remains challenging to construct models without a surfeit of light exotic states where the Standard Model index emerges naturally. We classify possible single-sector models based on Sp confining SSQCD according to their Standard Model index and number of composite messengers. This leads to simple, calculable models that spontaneously break supersymmetry, reproduce the fermion flavor hierarchy, and explain the Standard Model index dynamically with little or no additional matter. At low energies these theories realize a 'more minimal' soft spectrum with direct mediation and a gravitino LSP.
Date: August 12, 2011
Creator: Behbahani, Siavosh R.; /SLAC /Stanford U., Phys. Dept.; Craig, Nathaniel; /Stanford U., Phys. Dept. /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Torroba, Gonzalo & /SLAC /Stanford U., Phys. Dept.
Partner: UNT Libraries Government Documents Department

Nearly Supersymmetric Dark Atoms

Description: Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
Date: August 12, 2011
Creator: Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G. et al.
Partner: UNT Libraries Government Documents Department

Direct Imaging of the Coexistence of Ferromagnetism and Superconductivity at the LaA1O3/SrTiO3 Interface

Description: LaAlO{sub 3} and SrTiO{sub 3} are insulating, nonmagnetic oxides, yet the interface between them exhibits a two-dimensional electron system with high electron mobility, superconductivity at low temperatures, and electric-field-tuned metal-insulator and superconductor-insulator phase transitions. Bulk magnetization and magnetoresistance measurements also suggest some form of magnetism depending on preparation conditions and suggest a tendency towards nanoscale electronic phase separation. Here we use local imaging of the magnetization and magnetic susceptibility to directly observe a landscape of ferromagnetism, paramagnetism, and superconductivity. We find submicron patches of ferromagnetism in a uniform background of paramagnetism, with a nonuniform, weak diamagnetic superconducting susceptibility at low temperature. These results demonstrate the existence of nanoscale phase separation as suggested by theoretical predictions based on nearly degenerate interface subbands associated with the Ti orbitals. The magnitude and temperature dependence of the paramagnetic response suggests that the vast majority of the electrons at the interface are localized, and do not contribute to transport measurements. In addition to the implications for magnetism, the existence of a 2D superconductor at an interface with highly broken inversion symmetry and a ferromagnetic landscape in the background suggests the potential for exotic superconducting phenomena.
Date: August 12, 2011
Creator: Bert, Julie
Partner: UNT Libraries Government Documents Department

Bioinformatics tools for cancer metabolomics

Description: This review focuses on the use of different bioinformatics tools in cancer metabolomics studies.
Date: January 12, 2011
Creator: Blekherman, Grigoriy; Laubenbacher, Reinhard; Cortes, Diego F.; Mendes, Pedro; Torti, Frank M.; Akman, Steven et al.
Partner: UNT College of Arts and Sciences

An effect of the networks of the subgrain boundaries on spectral responses of thick CdZnTe detectors

Description: CdZnTe (CZT) crystals used for nuclear-radiation detectors often contain high concentrations of subgrain boundaries and networks of poligonized dislocations that can significantly degrade the performance of semiconductor devices. These defects exist in all commercial CZT materials, regardless of their growth techniques and their vendor. We describe our new results from examining such detectors using IR transmission microscopy and white X-ray beam diffraction topography. We emphasize the roles on the devices performances of networks of subgrain boundaries with low dislocation densities, such as poligonized dislocations and mosaic structures. Specifically, we evaluated their effects on the gamma-ray responses of thick, >10 mm, CZT detectors. Our findings set the lower limit on the energy resolution of CZT detectors containing dense networks of subgrain boundaries, and walls of dislocations.
Date: August 12, 2011
Creator: Bolotnikov, A.; Butcher, J.; Camarda, G.; Cui, Y.; Egarievwe, S.; Fochuk, P. et al.
Partner: UNT Libraries Government Documents Department

Study of the Two-Body Charmless B Decays with the Babar Experiment

Description: Charmless two-body B decays are a powerful source of information for the CKM parameters, for the CP asymmetries and last but not least for the understanding of the hadronic uncertainties.
Date: October 12, 2011
Creator: Bona, M.
Partner: UNT Libraries Government Documents Department

Study of the Decays of Charm Mesons With the BaBar Experiment

Description: Presented hadronic form factor measurements of D{sup 0} {yields} K{sup -}e{sup +}{nu}{sub e} and D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e} with - dramatically reduced measurement error and first q{sup 2}-dependent study of D{sub s}{sup +} {yields} {phi}e{sup +}{nu}{sub e}. First observation at > 6.5{sigma} level of doubly-Cabibbo suppressed D{sup +} {yields} K{sup +}{pi}{sup 0} decay mode - BF(D{sup +} {yields} K{sup +}{pi}{sup 0}) = (2.52 {+-} 0.47(stat) {+-} 0.25(syst) {+-} 0.08(ref)) x 10{sup -4}. Improved measurements of Cabibbo-suppressed to Cabibbo-favored branching ratios for D{sup 0} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0} {yields} K{sup -}K{sup +}{pi}{sup 0} decay modes.
Date: October 12, 2011
Creator: Bondioli, Mario & /UC, Irvine
Partner: UNT Libraries Government Documents Department

Novel QCD Phenomenology

Description: I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of searches for new physics at the LHC. Other novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates.
Date: August 12, 2011
Creator: Brodsky, Stanley J. & /SLAC /Southern Denmark U., CP3-Origins
Partner: UNT Libraries Government Documents Department

Machine-Induced Showers Entering the Atlas and CMS Detectors in the LHC

Description: One source of experimental background in the LHC is showers induced by particles hitting the upstream collimators or particles that have been scattered on the residual gas. We estimate the flux and distribution of particles entering the ATLAS and CMS detectors through FLUKA simulations starting either in the tertiary collimators or with inelastic beam-gas interactions. Comparisons to MARS15 results are also presented. Our results can be used as a source term for further simulations of the machine-induced background in the experimental detectors. To ensure optimal performance of the LHC experimental detectors, it is important to understand the background, which can come fromseveral sources. In this article we discuss machine-induced background, caused either by nearby beam losses or interactions between beam particles and the residual gas inside the vacuum pipe. Beam losses outside the experimental interaction regions (IRs) are unavoidable during collider operation. The halo is continuously repopulated and has to be cleaned by the collimation system, so that the losses in the cold magnets are kept at a safe level. The collimation system is located in two dedicated insertions (IR3 and IR7) but a small leakage of secondary and tertiary halo is expected to escape. Some particles make it to the experimental IRs, where they are intercepted by tertiary collimators (TCTs) that are installed in order to protect the inner triplet magnets. Some parts of the induced high-energy shower can escape and propagate into the detectors. Another source of background is beam-gas interactions. Beam protons can scatter elastically or inelastically on residual gas molecules. If an inelastic interaction occurs close to the detector, it causes a shower that could reach the detector. Elastic interactions can scatter protons directly onto the TCTs without passing IR7, which has to be treated separately from the beam-halo losses discussed above. Machine-induced background can also ...
Date: September 12, 2011
Creator: Bruce, R.; Assmann, R. W.; Boccone, V.; Burkhardt, H.; Cerutti, F.; Ferrari, A. et al.
Partner: UNT Libraries Government Documents Department

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

Description: An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.
Date: April 12, 2011
Creator: Cappers, Peter; Wiser, Ryan; Thayer, Mark & Hoen, Ben
Partner: UNT Libraries Government Documents Department

A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

Description: We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.
Date: September 12, 2011
Creator: Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin; Lin, Guey-Lin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Noble, Robert J. et al.
Partner: UNT Libraries Government Documents Department

Unusual Layer-Dependent Charge Distribution, Collective Mode Coupling, and Superconductivity in Multilayer Cuprate Ba2Ca3Cu4O8F2

Description: Low energy ultrahigh momentum resolution angle resolved photoemission spectroscopy study on four-layer self-doped high T{sub c} superconductor Ba{sub 2}Ca{sub 3}Cu{sub 4}O{sub 8}F{sub 2} (F0234) revealed fine structure in the band dispersion, identifying the unconventional association of hole and electron doping with the inner and outer CuO{sub 2} layers, respectively. For the states originating from two inequivalent CuO{sub 2} layers, different energy scales are observed in dispersion kinks associated with the collective mode coupling, with the larger energy scale found in the electron (n-) doped state which also has stronger coupling strength. Given the earlier finding that the superconducting gap is substantially larger along the n-type Fermi surface, our observations connect the mode coupling energy and strength with magnitude of the pairing gap.
Date: August 12, 2011
Creator: Chen, Yulin; /SLAC /Stanford U., Phys. Dept. /LBL, Berkeley; Iyo, Akira; /JRCAT, Tsukuba /Tsukuba Coll. Tech.; Yang, Wanli; /LBL, Berkeley et al.
Partner: UNT Libraries Government Documents Department