# Search Results

Advanced search parameters have been applied.

## Valuations and Valuation Rings

Description: This paper is an investigation of several basic properties of ordered Abelian groups, valuations, the relationship between valuation rings, valuations, and their value groups and valuation rings. The proofs to all theorems stated without proof can be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1858. In Chapter I several basic theorems which are used in later proofs are stated without proof, and we prove several theorems on the structure of ordered Abelian groups, and the basic relationships between these groups, valuations, and their valuation rings in a field. In Chapter II we deal with valuation rings, and relate the structure of valuation rings to the structure of their value groups.
Date: August 1975
Partner: UNT Libraries

## Prime Ideals in Commutative Rings

Description: This thesis is a study of some properties of prime ideals in commutative rings with unity.
Date: August 1970
Creator: Clayton, Marlene H.
Partner: UNT Libraries

## Properties of Some Classical Integral Domains

Description: Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.
Date: May 1975
Creator: Crawford, Timothy B.
Partner: UNT Libraries

## Overrings of an integral domain

Description: This dissertation focuses on the properties of a domain which has the property that each ideal is a finite intersection of a π-ideal, the properties of a domain which have the property that each ideal is a finite product of π-ideal, and the containment relations of the resulting classes of ideals.
Date: August 1992
Creator: Emerson, Sharon Sue
Partner: UNT Libraries

## Euclidean Rings

Description: The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.
Date: May 1974
Creator: Fecke, Ralph Michael
Partner: UNT Libraries

## Properties of R-Modules

Description: This thesis investigates some of the properties of R-modules. The material is presented in three chapters. Definitions and theorems which are assumed are stated in Chapter I. Proofs of these theorems may be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1958. It is assumed that the reader is familiar with the basic properties of commutative rings and ideals in rings. Properties of R-modules are developed in Chapter II. The most important results presented in this chapter include existence theorems for R-modules and properties of submodules in R-modules. The third and final chapter presents an example which illustrates how a ring R, may be regarded as an R-module and speaks of the direct sum of ideals of a ring as a direct sum of submodules.
Date: August 1989
Creator: Granger, Ginger Thibodeaux
Partner: UNT Libraries

## Some Properties of Ideals in a Commutative Ring

Description: This thesis exhibits a collection of proofs of theorems on ideals in a commutative ring with and without a unity. Theorems treated involve properties of ideals under certain operations (sum, product, quotient, intersection, and union); properties of homomorphic mappings of ideals; contraction and extension theorems concerning ideals and quotient rings of domains with respect to multiplicative systems; properties of maximal, minimal, prime, semi-prime, and primary ideals; properties of radicals of ideals with relations to quotient rings, semi-prime, and primary ideals.
Date: August 1973
Creator: Hicks, Gary B.
Partner: UNT Libraries

## Containment Relations Between Classes of Regular Ideals in a Ring with Few Zero Divisors

Description: This dissertation focuses on the significance of containment relations between the above mentioned classes of ideals. The main problem considered in Chapter II is determining conditions which lead a ring to be a P-ring, D-ring, or AM-ring when every regular ideal is a P-ideal, D-ideal, or AM-ideal, respectively. We also consider containment relations between classes of regular ideals which guarantee that the ring is a quasi-valuation ring. We continue this study into the third chapter; in particular, we look at the conditions in a quasi-valuation ring which lead to a = Jr, sr - f, and a = v. Furthermore we give necessary and sufficient conditions that a ring be a discrete rank one quasi-valuation ring. For example, if R is Noetherian, then ft = J if and only if R is a discrete rank one quasi-valuation ring.
Date: May 1987
Creator: Race, Denise T. (Denise Tatsch)
Partner: UNT Libraries

## Some Properties of Commutative Rings Without a Unity

Description: This thesis investigates some of the properties of commutative rings which do not necessarily contain a multiplicative identity (unity).
Date: August 1970
Creator: Stevens, Charles S.
Partner: UNT Libraries