50 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluation of extraction chromatography for americium recovery

Description: Extraction, or reverse-phase partition chromatography, as used mostly for analytical separations, employs an organic solvent extractant as a stationary phase on an inert support material. This technique, which has the advantage of utilizing the versatility of solvent extraction systems with the less expensive operation of ion exchange equipment, was evaluated for a process to recover low level concentrations of americium from acidic process waste streams at Rocky Flats. The bidentate organophosphorous extractant DHDECMP (dihexyl-N, N-diethylcarbamylmethylene phosphonate) was used as the stationary phase since it was shown to effectively scavenge americium from acidic waste streams without significantly extracting impurity ions. Over 30 support materials were evaluated for DHDECMP capacity and for their ability to retain the extractant. Of the supports tested, the Amberlite XAD macroreticular sorbents were found to have the highest DHDECMP capacity. Amberlite XAD-4 beads retained the extractant significantly better than the other supports evaluated. Thus, this solvent was tested for americium breakthrough capacity and compared to the theoretical capacity.
Date: March 23, 1977
Creator: Alford, C. E. & Navratil, J. D.
Partner: UNT Libraries Government Documents Department

Tributyl phosphate impregnated sorbent for plutonium--uranium separation

Description: Extraction, or reverse-phase partition chromatography, as used mostly for analytical separations, employs an organic solvent extractant as a stationary phase on an inert support material. This technique has the advantage of utilizing the versatility of solvent extraction systems with the less expensive operation of ion exchange equipment. Bayer AG Lewatit OC-1023, a tributyl phosphate impregnated sorbent developed for extraction chromatography, was evaluated for the separation of uranium and plutonium from mixed actinide residues at Rocky Flats. Uranium breakthrough capacity and eluion behavior were determined for the OC-1023. Uranium breakthrough capacity results show that the support has a high capacity for uranium from 10 g/l uranium and 25 g/l plutonium-2.5 g/l uranium feeds. The total uranium capacity of the support under these conditions was determined to range from about 53 to 65% of the theoretical TBP capacity. The uranium elution results show that the uranium can be eluted with a minimum of eluant.
Date: March 31, 1978
Creator: Alford, C.E. & Navratil, J.D.
Partner: UNT Libraries Government Documents Department


Description: The aging of the US nuclear stockpile presents a number of challenges, including the ever-increasing radioactivity of plutonium residues from {sup 241}Am. Minimization of this weak gamma-emitter in process and waste solutions is desirable to reduce both worker exposure and the effects of radiolysis on the final waste product. Removal of americium from plutonium nitric acid processing effluents, however, is complicated by the presence of large.quantities of competing metals, particularly Fe and Al, and-strongly oxidizing acidic solutions. The reprocessing operation offers several points at which americium removal maybe attempted, and we are evaluating two classes of materials targeted at different steps in the process. Extraction chromatography resin materials loaded with three different alkylcarbamoyl phosphinates and phosphine oxides were accessed for Am removal efficiency and Am/Fe selectivity from 1-7 molar nitric acid solutions. Commercial and experimental mono- and bifunctional anion-exchange resins were evaluated for total alpha-activity removal from post-evaporator solutions whose composition, relative to the original nitric acid effluent, is reduced in acid and greatly increased in total salt content. With both classes of materials, americium/total alpha emission removal is sufficient to meet regulatory requirements even under sub-optimal conditions. Batch distribution coefficients, column performance data, and the effects of Fe-masking agents will be presented.
Date: August 1, 2000
Creator: BARR, M.; JARVINEN, G. & AL, ET
Partner: UNT Libraries Government Documents Department

Rapid separation of individual rare-earth elements from fission products

Description: A microprocessor-controlled radiochemical separation system has been developed to rapidly separate rare-earth elements from gross fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the rare-earth group by extraction chromatography using dihexyldiethylcarbamylmethylenephosphonate (DHDECMP) adsorbed on Vydac C/sub 8/ resin. The second column isolates the individual rare-earth elements by cation exchange using Aminex A-9 resin with ..cap alpha..-hydroxyisobutyric acid (..cap alpha..-HIBA) as the eluent. With this system, fission-product rare-earth isotopes with half-lives as short as three minutes have been studied.
Date: January 1, 1980
Creator: Baker, J.D.; Gehrke, R.J.; Greenwood, R.C. & Meikrantz, D.H.
Partner: UNT Libraries Government Documents Department

Test plan for demonstrating plutonium extraction from 10-L solutions using EIChrom extraction chromatographic resins

Description: Corrosive plutonium solutions stored in 10-L containers at the Plutonium Finishing Plant must be treated to convert the plutonium to a safe, solid form for storage and to remove the americium so that radiation exposure can be reduced. Extraction chromatographic resins will be tested for separating plutonium from these solutions in the laboratory. Separation parameters will be developed during the testing for large scale processing of the 10-L solutions and solutions of similar composition. Use of chromatographic resins will allow plutonium separation with minimum of chemical addition to the feed and without the need for plutonium valence adjustment. The separated plutonium will be calcined to plutonium oxide by direct solution calcination.
Date: August 15, 1994
Creator: Barney, G. S.
Partner: UNT Libraries Government Documents Department

Arsenic speciation using high performance liquid chromatography-inductively coupled plasma-mass spectrometry

Description: A method has been developed by Argonne National Laboratory to identify and quantify As(III), As(V), and organoarsenic compounds in environmental samples. A arsenic species were separated by reversed-phase, ion-pairing, HPLC using a microbore Inertsil-ODS{trademark} column. Only 1 {micro}L of sample was injected on the column, and the mobile phase flow rates were typically on the order of 40 {micro}L/min. The HPLC mobile phase was a mixture of methanol and tetrabutylammonium hydroxide (TBAH), and the column effluent was introduced into an ICP-mass spectrometer using direct injection nebulization. Detection limits of less than 1 pg As (as injected on the column) were easily obtained for each arsenic species. The effect of changes in mobile phase composition and ICP-MS conditions will be described, as well as quality control measures, e.g., the use of surrogates, internal standards, and matrix spikes. Precision and accuracy information will be presented from the analysis of aqueous standards and soil extracts that were spiked with arsenic oxide [As(III)], sodium arsenate [As(V)], dimethylarsinic acid (DMAA), or chlorovinyl arsenious acid (CVAA). The authors believe that these data demonstrate the utility of this technique for the sensitive determination of arsenic species present in water or soil.
Date: August 1995
Creator: Bass, D. A.; Yaeger, J. S.; Crain, J. S.; Kiely, J. T.; Parish, K. J.; Gowdy, M. J. et al.
Partner: UNT Libraries Government Documents Department

Nineteenth annual actinide separations conference: Conference program and abstracts

Description: This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies.
Date: December 31, 1995
Creator: Bronson, M.
Partner: UNT Libraries Government Documents Department

Evaluation of isotope migration: land burial water chemistry at commercially operated low-level radioactive waste disposal sites. Quarterly progress report, July--September 1976

Description: This is the second quarterly progress report of water chemistry at commercially operated low-level radioactive waste disposal sites. The program is a joint investigation undertaken by the United States Nuclear Regulatory Commission and the United States Geological Survey as part of a comprehensive plan to study the hydrogeological and geochemical behavior of existing commercially operated low-level radioactive waste disposal sites. The analytical methods that were used to concentrate, separate and identify organic compounds found in filtered trench water samples taken from the Maxey Flats disposal site April 1976 are described. A variety of organic compounds were isolated and identified in all of the trenches sampled.
Date: April 1, 1977
Creator: Colombo, P.; Weiss, A. J. & Francis, A. J.
Partner: UNT Libraries Government Documents Department

Characterization of Group V Dubnium Homologs on DGA Extraction Chromatography Resin from Nitric and Hydrofluoric Acid Matrices

Description: Studies of the chemical properties of superheavy elements (SHE) pose interesting challenges due to their short half-lives and low production rates. Chemical systems must have extremely fast kinetics, fast enough kinetics to be able to examine the chemical properties of interest before the SHE decays to another nuclide. To achieve chemistry on such time scales, the chemical system must also be easily automated. Most importantly however, a chemical system must be developed which provides suitable separation and kinetics before an on-line study of a SHE can be performed. Relativistic effects make studying the chemical properties of SHEs interesting due to the impact these effects could have on the SHEs chemical properties. Relativistic effects arise when the velocity of the s orbital electrons approach the speed of light. As this velocity increases, the Bohr radius of the inner electron orbitals decreases and there is an increase in the particles mass. This contraction results in a destabilization of the energy of the outer d and f electron orbitals (5f and 6d in the case of SHE), which can cause these to expand due to their increased shielding from the nuclear charge. Another relativistic effect is the spin-orbit splitting for p, d, and f orbitals into j = 1 {+-} 1/2 states. This can lead most interestingly to a possible increased stability of element 114, which due to large spin-orbit splitting of the 7p orbital and the relativistically stabilized 7p{sub 1/2} and 7s orbital gives rise to a closed shell ground state of 7s{sup 2}7p{sub 1/2}{sup 2}. The homologs of element 105, dubnium (Db), Ta and Nb and the pseudo-homolog Pa, are well known to hydrolyze and form both neutral and non-neutral monoatomic and polyatomic species that may cause issues with extraction from a given chemical system. Early ion-exchange and solvent-extraction studies show ...
Date: February 21, 2012
Creator: Despotopulos, J D & Sudowe, R
Partner: UNT Libraries Government Documents Department

Chemical Treatment of US Department of Energy High Level and Low Level Waste to Obtain a Pure Radiochemical Fraction for Determination of Californium Alpha-Decay Content

Description: We have developed a chemical separation technique that allows the radiochemical determination of the californium a-decay content in Department of Energy (DOE) high level wastes from the Hanford and Savannah River sites. The chemical separation technique uses a series of column extraction chromatography steps that use Eichrom Industries' lanthanide and actinide plus 3 oxidation state selective Ln-resin(R) and the transuranic selective plus 4 oxidation state TRU-resin(R) to obtain intermediate product phases in dilute nitric acid. The technique has been demonstrated on three types of authentic DOE high and low level waste samples. We obtain discrimination from Pu a-activity by a factor of over 200 and from Cm-244 a-activity by a factor approaching 1700. Californium recoveries are measured by addition of a Cf-249 spike and are in the range of 50 percent to 90 percent in the synthetic samples and are in the range of 1.4 percent to 48 percent for the authentic DOE waste samples.
Date: December 2, 2002
Creator: Dewberry, R.
Partner: UNT Libraries Government Documents Department

Recent advances in the development of extraction chromatographic materials for the isolation of radionuclides from biological and environmental samples.

Description: The determination of low levels of radionuclides in environmental and biological samples is often hampered by the complex and variable nature of the samples. One approach to circumventing this problem is to incorporate into the analytical scheme a separation and preconcentration step by which the species of interest can be isolated from the major constituents of the sample. Extraction chromatography (EXC), a form of liquid chromatography in which the stationary phase comprises an extractant or a solution of an extractant in an appropriate diluent coated onto an inert support, provides a simple and efficient means of performing a wide variety of metal ion separations. Recent advances in extractant design, in particular the development of extractants capable of metal ion recognition or of strong complex formation even in acidic media, have substantially improved the utility of the method. For the preconcentration of actinides, for example, an EXC resin consisting of a liquid diphosphonic acid supported on a polymeric substrate has been shown to exhibit extraordinarily strong retention of these elements from acidic chloride media. This resin, together with other related materials, can provide the basis of a number of efficient and flexible schemes for the separation and preconcentration of radionuclides form a variety of samples for subsequent determination.
Date: November 30, 1998
Creator: Dietz, M. L.
Partner: UNT Libraries Government Documents Department

Extraction chromatography: Progress and opportunities

Description: Extraction chromatography provides a simple and effective method for the analytical and preparative-scale separation of a variety of metal ions. Recent advances in extractant design, particularly the development of extractants capable of metal ion recognition or of strong complex formation in highly acidic media, have significantly improved the utility of the technique. Advances in support design, most notably the introduction of functionalized supports to enhance metal ion retention, promise to yield further improvements. Column instability remains a significant obstacle, however, to the process-scale application of extraction chromatography. 79 refs.
Date: October 1, 1997
Creator: Dietz, M.L.; Horwitz, E.P. & Bond, A.H.
Partner: UNT Libraries Government Documents Department

The removal of uranium from acidic media using ion exchange and/or extraction chromatography

Description: The separation and purification of uranium from either nitric acid or hydrochloric acid media can be accomplished by using either solvent extraction or ion-exchange. Over the past two years at Los Alamos, emerging programs are focused on recapturing the expertise required to do limited, small-quantity processing of enriched uranium. During this period of time, we have been investigating ion-addition, waste stream polishing is associated with this effort in order to achieve more complete removal of uranium prior to recycle of the acid. Extraction chromatography has been demonstrated to further polish the uranium from both nitric and hydrochloric acid media thus allowing for a more complete recovery of the actinide material and creation of less waste during the processing steps.
Date: June 1, 1996
Creator: FitzPatrick, J.R.; Schake, B.S.; Murphy, J.; Holmes, K & West, M.H.
Partner: UNT Libraries Government Documents Department

Separation of Lanthanide Ions with Kläui Ligand Resin

Description: Separation and pre-concentration of the desired analyte is often a critical step in many radioanalytical methods. Current procedures for separating and concentrating analytes for detection are complex, and can be both expensive and time consuming. Therefore, the purpose of this research is to develop an alternative method of separating lanthanide ions through the use of an extraction chromatography resin containing a Klaui ligand salt. This research is a continuation of a concerted effort to develop new methods of detecting small concentrations of radionuclides and lanthanides using Klaui ligands. The Klaui ligands, C5Me5Co(OP(OR)2)3- (R=Me, Et, n-Pr) (LOR-), have unique affinity for lanthanide and actinide ions in the presence of competing metal ions. The use of 1 wt% NaLOR (R=Et or n-Pr) adsorbed onto resin support has been shown to extract lanthanide ions from aqueous nitric acid solutions of different concentrations. In order to further evaluate the utility of these materials in radiochemical separation, the selectivity of the resins for the different lanthanide ions was examined by measuring the distribution coefficients (Kd) for a series of lanthanides over a range of solution conditions. Based on prior research with actinide ions, it was hypothesized that the lanthanide ions would bond strongly with the Klaui ligands. The success of this research is important, because it will assist in expanding and improving current automated radiochemical methods, which will decrease the cost of developing and implementing radiochemical methods. To date, Kd values have been determined for Eu+3, Nd+3 and Pr+3 under varying nitric acid (HNO3) concentration, using a resin consisting of 1.0 wt% NaLOPr on Amberlite XAD-7HP. The dependence of the Kd values for Eu+3 has also been examined as a function of the ligand-to-europium ratio and the nitrate concentration. Decreasing Kd values were obtained upon increasing the nitric acid concentration, indicating protonation of the ligand, ...
Date: July 1, 2007
Creator: Granger, Trinity D.; Henry, Victoria A. & Latesky, Stanley
Partner: UNT Libraries Government Documents Department

Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

Description: The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.
Date: August 1, 1985
Creator: Gregorich, K.E.
Partner: UNT Libraries Government Documents Department

Rapid, Quantitative Analysis of Americium, Curium and Plutonium Isotopes in Hanford Samples Using Extraction Chromatography and Precipitation Plating

Description: Recently developed methods for the rapid, quantitative analysis of americium (Am), curium (Cm), and plutonium (Pu) isotopes in Hanford soil, sludge, and waste-tank samples are described. After dissolution, dilutions are made as necessary based on alpha-energy analysis of a small aliquot of the original solution. isotopic tracers are then added and Am-Cm and Pu are separated by extraction chromatography, coprecipitated with neodymium fluoride, and counted. Examples of alpha spectra are given, and results obtained for Hanford sludge samples are presented.
Date: April 1, 1994
Creator: Kaye, J. H.; Strebin, R. S. & Orr, R. D.
Partner: UNT Libraries Government Documents Department

Feasibility study of plutonium and uranium measurements in input dissolver solutions

Description: We are studying the isotope dilution gamma-ray spectrometry (IDGS) technique for the simultaneous measurements of concentrations and isotopic compositions for both plutonium and uranium in spent-fuel dissolver solutions at a reprocessing plant. Previous experiments have demonstrated that the IDGS technique can determine the elemental concentrations and isotopic compositions of plutonium in dissolver solutions. The chemical separation and recovery methods for just plutonium were ion-exchange techniques using anion exchange resin beads and filter papers. To keep both plutonium and uranium in the sample for simultaneous measurements, a new sample preparation method is being studied and developed: extraction chromatography. The technique uses U/TEVA{center_dot}Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for measurements by high-resolution gamma-ray spectrometry.
Date: October 1, 1995
Creator: Li, T.K.; Kitagawa, O.; Kuno, Y. & Kurosawa, A.
Partner: UNT Libraries Government Documents Department

Simultaneous measurements of plutonium and uranium in spent-fuel dissolver solutions

Description: The authors have studied the isotope dilution gamma-ray spectrometry (IDGS) technique for simultaneous measurements of elemental concentrations and isotopic compositions for both plutonium and uranium in input spent-fuel dissolver solutions at a reprocessing plant. The technique under development includes both sample preparation and analysis methods. For simultaneous measurements of both plutonium and uranium, a critical issue is to develop a new method to keep both plutonium and uranium in the sample after they are separated from fission products. Furthermore, it is equally important to improve the analysis method so that the precision and accuracy of the plutonium analysis remain unaffected while uranium is retained in the sample. To keep both plutonium and uranium in the sample for simultaneous measurements, extraction chromatography is being studied and shows promise to achieve the goal of cosegregation of the plutonium and uranium. The technique uses U/TEVA{center_dot}Spec resin to separate fission products and recover both uranium and plutonium in the resin from dissolver solutions for subsequent measuring using high-resolution gamma-ray spectrometry. Owing to the fact that the U/Pu ratio is altered during the fission product separation phase, it is necessary to develop a method which could accurately correct for this effect. Such a method was developed using the unique decay properties of {sup 241}Pu to {sup 237}U and shows considerable promise in allowing for accurate determination of the {sup 235}U concentrations before the chemical extraction.
Date: November 1, 1997
Creator: Li, T.K.; Kuno, T.; Kitagawa, O.; Sato, S.; Kurosawa, A. & Kuno, Y.
Partner: UNT Libraries Government Documents Department

Evaluation of solid-based separation materials for the pretreatment of radioactive wastes

Description: Separation science will play an important role in pretreating nuclear wastes stored at various US Department of Energy Sites. The application of separation processes offers potential economic and environmental benefits with regards to remediating these sites. For example, at the Hanford Site, the sizeable volume of radioactive wastes stored in underground tanks could be partitioned into a small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). After waste separation, only the smaller volume of HLW would require costly vitrification and geologic disposal. Furthermore, the quality of the remaining LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. This report investigates extraction chromatography as a possible separation process for Hanford wastes.
Date: May 1, 1993
Creator: Lumetta, G. J.; Wagner, M. J.; Wester, D. W. & Morrey, J. R.
Partner: UNT Libraries Government Documents Department

Selective Media for Actinide Collection and Pre-Concentration: Results of FY 2006 Studies

Description: In this work, we have investigated new materials for potential use in automated radiochemical separations. The work can be divided into three primary tasks: (1) synthesis of new ligands with high affinity for actinide ions, (2) evaluation of new materials for actinide ion affinity, and (3) computational design of advanced ligand architectures for highly selective binding of actinide ions. Ligand Synthesis Work was conducted on synthesizing Kl?ui ligand derivatives containing functionalized pendant groups on the cyclopentadienyl ring. The functionalized pendent groups would allow these ligands to be attached to organic and inorganic solid supports. This work focused on synthesizing the compound Na[Cp?Co(PO(OC2H5)2)3], where Cp?= C5H4C(O)OCH3. Synthesizing this compound is feasible, but the method used in FY 2006 produced an impure material. A modified synthetic scheme has been developed and will be pursued in FY 2007. Work was also initiated on synthesizing bicyclic diamides functionalized for binding to polymeric resins or other surfaces. Researchers at the University of Oregon are collaborators in this work. To date, this effort has focused on synthesizing and characterizing a symmetrically substituted bicyclic diamide ligand with the ?COOH functionality. Again, this synthetic effort will continue into FY 2007. Separations Material Evaluation Work was conducted in FY 2006 to provide a more extensive set of data on the selectivity and affinity of extraction chromatography resins prepared by sorption of Kl?ui ligand onto an inert macroreticular polymeric support. Consistent with previous observations, it was found that these materials strongly bind tetravalent actinides. These materials also adsorb trivalent actinides at low nitric acid concentrations, but the affinity for the trivalent actinides decreases with increasing nitric acid concentration. These materials have relatively low affinity for U(VI), but they do sorb U(VI) to a greater extent than Am(III) at [HNO3] > 0.3 M. Preliminary results suggest that the Kl?ui resins can ...
Date: November 17, 2006
Creator: Lumetta, Gregg J.; Addleman, Raymond S.; Hay, Benjamin P.; Hubler, Timothy L.; Levitskaia, Tatiana G.; Sinkov, Sergey I. et al.
Partner: UNT Libraries Government Documents Department

Applications of DHDECMP extraction chromatography to nuclear analytical chemistry

Description: Dihexyl-N,N-diethylcarbamylmethylenephosphonate (DHDECMP) is a highly selective extractant for actinides and lanthanides. This reagent, extensively studied for process-scale operations, also has valuable analytical applications. Extraction chromatographic columns of DHDECMP, supported on inert, porous, polymer beads effectively separate most metallic impurity elements from the retained inner transition elements. The retained elements can be separated into individual fractions of (1) lanthanides, (2) americium, (3) plutonium, and (4) uranium by mixed-solvent anion exchange.
Date: January 1, 1981
Creator: Marsh, S.F. & Simi, O.R.
Partner: UNT Libraries Government Documents Department