173 Matching Results

Search Results

Advanced search parameters have been applied.

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production. Final subcontract report, 1 July 1990--30 April 1994

Description: This report describes work performed under a three-phase subcontract. The objectives of the program include (1) achievement of active-area efficiencies of greater than 14% on small cells; (2) achievement of aperture-area efficiencies of greater than 13% on 0.09-m{sup 2} (1 ft{sup 2}) modules; (3) achievement of aperture-area efficiencies of greater than 12.5% on 0.37-m{sup 2} (4 ft{sup 2}) modules; and achievement of greater than 20-year module life (based on life testing extrapolations) with no greater than 10% efficiency degradation. The results obtained and described herein include the following: (1) efficiencies of 12.7% were achieved on small-area devices; (2) 0.09-m{sup 2} (1 ft{sup 2}) modules achieved greater than 8% aperture-area efficiency, but work for further efficiency improvement was redirected toward the 0.37-M{sup 2} (4 if) modules; (3) 0.37-m{sup 2} (4 ft{sup 2}) modules achieved 26.5-W output, which calculates to 8.0% aperture-area efficiency; (4) consistent prototype production was focused on and substantially achieved within Phase 2; (5) life testing at the National Renewable Energy Laboratory showed no inherent stability problems with the CdTe technology, and the accuracy of module measurement was satisfactorily resolved; and (6) a ``cradle-to-cradle`` recycling program was begun based upon the philosophy that the establishment of such mechanisms will be required to ensure maximum recapture and recycling of all manufacturing waste materials and/or modules returned from the field.
Date: June 1, 1994
Creator: Albright, S. P. & Johnson, S. X.
Partner: UNT Libraries Government Documents Department

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production. Annual subcontract report, 1 July 1990--31 December 1991

Description: This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.
Date: April 1, 1992
Creator: Albright, S. P.; Ackerman, B.; Chamberlin, R. R. & Jordan, J. F.
Partner: UNT Libraries Government Documents Department

Module process optimization and device efficiency improvement for stable, low-cost, large-area, cadmium telluride-based photovoltaic module production

Description: This report describes work under a three-year phased subcontract to develop CdS/CdTe devices and modules and to further improve the technology base at Photon Energy, Inc. (PEI) to better address the commercialization issues and objectives of the PEI and the US Department of Energy. During this reporting period we (1) achieved efficiencies of 12.7% on small area devices, (2) achieved 1-ft{sup 2} modules with over 8% aperture-area efficiency (and active area efficiencies up to {approximately}10%), (3) tested 4-ft{sup 2} modules at NREL at 23.1 (21.3) watts, normalized (6.3% efficiency), and (4) found no inherent stability problems with CdTe technology during life testing, at both NREL and PEI. 7 refs.
Date: April 1, 1992
Creator: Albright, S.P.; Ackerman, B.; Chamberlin, R.R. & Jordan, J.F. (Photon Energy, Inc., El Paso, TX (United States))
Partner: UNT Libraries Government Documents Department

High-efficiency large-area CdTe panels. Final subcontract report, June 1987--July 1990

Description: The objective of this three year effort has been to develop an improved materials technology and fabrication process for limited volume production of 1 ft{sup 2} and 4 ft{sup 2} CdS/CdTe photovoltaic modules. The module stability objective by the end of this three year subcontract was to develop techniques to provide ten year life exploration with no greater than 10% degradation. In order to achieve these efficiency and stability objectives, the research program has been separated into tasks including: (1) analysis and characterization of CdS/CdTe Devices; (2) performance optimization on small cells; (3) encapsulation and stability testing; and (4) module efficiency optimization. 27 refs., 18 figs., 3 tabs.
Date: November 1, 1990
Creator: Albright, S.P.; Chamberlin, R.R. & Jordan, J.F.
Partner: UNT Libraries Government Documents Department

High-efficiency large-area CdTe panels

Description: The objective of this three year effort has been to develop an improved materials technology and fabrication process for limited volume production of 1 ft{sup 2} and 4 ft{sup 2} CdS/CdTe photovoltaic modules. The module stability objective by the end of this three year subcontract was to develop techniques to provide ten year life exploration with no greater than 10% degradation. In order to achieve these efficiency and stability objectives, the research program has been separated into tasks including: (1) analysis and characterization of CdS/CdTe Devices; (2) performance optimization on small cells; (3) encapsulation and stability testing; and (4) module efficiency optimization. 27 refs., 18 figs., 3 tabs.
Date: November 1, 1990
Creator: Albright, S.P.; Chamberlin, R.R. & Jordan, J.F. (Photon Energy, Inc., El Paso, TX (USA))
Partner: UNT Libraries Government Documents Department

Innovative sputtering techniques for CIS and CdTe submodule fabrication. Annual subcontract report, 1 September 1991--31 August 1992

Description: This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag{trademark}) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.
Date: March 1, 1993
Creator: Armstrong, J. M.; Misra, M. S. & Lanning, B.
Partner: UNT Libraries Government Documents Department

Innovative sputtering techniques for CIS and CdTe submodule fabrication

Description: This report describes work done during Phase 1 of the subject subcontract. The subcontract was designed to study innovative deposition techniques, such as the rotating cylindrical magnetron sputtering system and electrodeposition for large-area, low-cost copper indium diselenide (CIS) and cadmium telluride (CdTe) devices. A key issue for photovoltaics (PV) in terrestrial and future space applications is producibility, particularly for applications using a large quantity of PV. Among the concerns for fabrication of polycrystalline thin-film PV, such as CIS and CdTe, are production volume, cost, and minimization of waste. Both rotating cylindrical magnetron (C-Mag[trademark]) sputtering and electrodeposition have tremendous potential for the fabrication of polycrystalline thin-film PV due to scaleability, efficient utilization of source materials, and inherently higher deposition rates. In the case of sputtering, the unique geometry of the C-Mae facilitates innovative cosputtering and reactive sputtering that could lead to greater throughput reduced health and safety risks, and, ultimately, lower fabrication cost. Electrodeposited films appear to be adherent and comparable with low-cost fabrication techniques. Phase I involved the initial film and device fabrication using the two techniques mentioned herein. Devices were tested by both internal facilities, as well as NREL and ISET.
Date: March 1, 1993
Creator: Armstrong, J.M.; Misra, M.S. & Lanning, B. (Martin Marietta Aerospace, Denver, CO (United States). Astronautics Group)
Partner: UNT Libraries Government Documents Department

Fundamentals of polycrystalline thin film materials and devices

Description: This report presents the results of a one-year research program on polycrystalline thin-film solar cells. The research was conducted to better understand the limitations and potential of solar cells using CuInSe{sub 2} and CdTe by systematically investigating the fundamental relationships linking material processing, material properties, and device behavior. By selenizing Cu and In layers, we fabricated device-quality CuInSe{sub 2} thin films and demonstrated a CuInSe{sub 2} solar cell with 7% efficiency. We added Ga, to increase the band gap of CuInSe{sub 2} devices to increase the open-circuit voltage to 0.55 V. We fabricated and analyzed Cu(InGa)Se{sub 2}/CuInSe{sub 2} devices to demonstrate the potential for combining the benefits of higher V{sub oc} while retaining the current-generating capacity of CuInSe{sub 2}. We fabricated an innovative superstrate device design with more than 5% efficiency, as well as a bifacial spectral-response technique for determining the electron diffusion length and optical absorption coefficient of CuInSe{sub 2} in an operational cell. The diffusion length was found to be greater than 1 {mu}m. We qualitatively modeled the effect of reducing heat treatments in hydrogen and oxidizing treatments in air on the I-V behavior of CuInSe{sub 2} devices. We also investigated post-deposition heat treatments and chemical processing and used them to fabricate a 9.6%-efficient CdTe/CdS solar cell using physical vapor deposition.
Date: January 1991
Creator: Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S. & McCandless, B. E.
Partner: UNT Libraries Government Documents Department

Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1990--15 January 1991

Description: Results and conclusion of Phase I of a multi-year research program on polycrystalline thin film solar cells are presented. The research comprised investigation of the relationships among processing, materials properties and device performance of both CuInSe{sub 2} and CdTe solar cells. The kinetics of the formation of CuInSe{sub 2} by selenization with hydrogen selenide was investigated and a CuInSe{sub 2}/CdS solar cell was fabricated. An alternative process involving the reaction of deposited copper-indium-selenium layers was used to obtain single phase CuInSe{sub 2} films and a cell efficiency of 7%. Detailed investigations of the open circuit voltage of CuInSe{sub 2} solar cells showed that a simple Shockley-Read-Hall recombination mechanism can not account for the limitations in open circuit voltage. Examination of the influence of CuInSe{sub 2} thickness on cell performance indicated that the back contact behavior has a significant effect when the CuInSe{sub 2} is less than 1 micron thick. CdTe/CdS solar cells with efficiencies approaching 10% can be repeatedly fabricated using physical vapor deposition and serial post deposition processing. The absence of moisture during post deposition was found to be critical. Improvements in short circuit current of CdTe solar cells to levels approaching 25 mA/cm{sup 2} are achievable by making the CdS window layer thinner. Further reductions in the CdS window layer thickness are presently limited by interdiffusion between the CdS and the CdTe. CdTe/CdS cells stored without protection from the atmosphere were found to degrade. The degradation was attributed to the metal contact. CdTe cells with ZnTe:Cu contacts to the CdTe were found to be more stable than cells with metal contacts. Analysis of current-voltage and spectral response of CdTe/CdS cells indicates the cell operates as a p-n heterojunction with the diode current dominated by SRH recombination in the junction region of the CdTe.
Date: November 1, 1991
Creator: Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S. & McCandless, B. E.
Partner: UNT Libraries Government Documents Department

Polycrystalline thin film materials and devices. Annual subcontract report, 16 January 1991--15 January 1992

Description: Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.
Date: October 1, 1992
Creator: Baron, B. N.; Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S. & McCandless, B. E.
Partner: UNT Libraries Government Documents Department

Polycrystalline thin film materials and devices

Description: Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.
Date: October 1, 1992
Creator: Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S. & McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)
Partner: UNT Libraries Government Documents Department

Emerging materials for solar cell applications: electrodeposited CdTe. Second quarter report, May 16-August 15, 1980

Description: Work was centered about improving electroplating processes and cell fabrication techniques, with emphasis being given to three differing n-CdTe/Au Schottky configurations. The highest values of efficiency-related parmeters achieved with a simulated solar irradiation of 100 mW/cm/sup 2/ were 0.57V for open circuit voltage, 0.6 for fill factor, and 6 mA/cm/sup 2/ for short circuit current. Four important parameters are known to control the quality of the Monosolar electrodeposition process and resultant solar cells. They are electrolyte temperature, Te concentration in the solution at a specific pH, deposition or quasi-rest potential, and flow pattern of the electrolyte (stirring). The first three considerations are believed to be fully understood and optimized. Work is underway to further understand the effects of stirring on the diffusion of ionic components and the effects on CdTe film performance. Work was accelerated during the quarter to increase the short circuit current. Parallel programs using laser irradiation of finished CdTe films, heat treatment, and changes in the electrodeposition process itself to recrystallize films were started. The surface etching technique has been highly refined, while the entire cell manufacturing process is now reproducible when defect-free substrates are used.
Date: September 10, 1980
Creator: Basol, B. & Stafsudd, O.
Partner: UNT Libraries Government Documents Department

Low-cost CdZnTe devices for cascade cell application

Description: This report describes a research program to develop a low-cost technique for producing Cd{sub 1-x}Zn{sub x}Te devices for cascade solar cell applications. The technique involves a two-stage process for fabricating such devices with a band gap of about 1.7 eV and a transparent contact layer of low-resistivity ZnTe. In the first stage, thin films of Cd, Zn, and Te are deposited in stacked layers as Cd{sub 1-x}An{sub x}Te. The second stage involves hearing and reacting the layers to form the compound. At first, electrodeposition was used for depositing the layers to successfully fabricate Dc{sub 1-x}Zn{sub x}Te thin-film devices. These films were also intrinsically doped with copper. For the first time, transparent ZnTe films of low resistivity were obtained in a two-stage process; preliminary solar cells using films with low Zn content were demonstrated. A second phase of the project involved growing films with higher Zn content (>15%). Such films were grown on CdS-coated substrates for fabricating devices. The effects of the solar-cell processing steps on the Cd{sub 1-x}Zn{sub x}Te and CdS/Cd{sub 1-x}Zn{sub x}Te interfaces were studied; results showed that the nature of the interface depended on the stoichiometry of the Cd{sub 1-x}Zn{sub x}Te thin film. A sharp interface was observed for the CdS/CdTe structures, but the interface became highly diffused as the Zn content in the absorber layer increased above 15%. The interaction between the CdS window layer and the Cd{sub 1-x}Zn{sub x}Te absorber layer was found to result from an exchange reaction between Zn in the absorber layer and the thin CdS film. 14 refs., 10 figs.
Date: November 1, 1990
Creator: Basol, B.M. & Kapur, V.K. (International Solar Electric Technology, Inglewood, CA (USA))
Partner: UNT Libraries Government Documents Department

PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth]

Description: This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection net work; initiated fracture studies to develop methods to reduce wafer breakage; and started a module field studies program ...
Date: November 16, 1999
Creator: Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B. et al.
Partner: UNT Libraries Government Documents Department

Novel ways of depositing ZnTe films by a solution growth technique. Final subcontract report, 1 January 1990--1 January 1992

Description: An electrochemical process has been successfully developed for the reproducible deposition of ZnTe and copper-doped ZnTe films suitable as transparent ohmic contacts for CdS/CdTe solar cells. The development of this method and optimization of key processing steps in the fabrication of CdS/CdTe/ZnTe:Cu devices has allowed IEC to achieve cell performance results of FF>70% and {eta} {approximately}10%. Preliminary efforts have indicated that the deposition methods investigated are potentially feasible for the formation of other II-VI compounds for use in polycrystalline thin film solar devices and should be the focus of future work.
Date: October 1, 1992
Creator: Birkmire, R. W.; McCandless, B. E.; Yokimcus, T. A. & Mondal, A.
Partner: UNT Libraries Government Documents Department

Novel ways of depositing ZnTe films by a solution growth technique

Description: An electrochemical process has been successfully developed for the reproducible deposition of ZnTe and copper-doped ZnTe films suitable as transparent ohmic contacts for CdS/CdTe solar cells. The development of this method and optimization of key processing steps in the fabrication of CdS/CdTe/ZnTe:Cu devices has allowed IEC to achieve cell performance results of FF>70% and {eta} {approximately}10%. Preliminary efforts have indicated that the deposition methods investigated are potentially feasible for the formation of other II-VI compounds for use in polycrystalline thin film solar devices and should be the focus of future work.
Date: October 1, 1992
Creator: Birkmire, R. W.; McCandless, B. E.; Yokimcus, T. A. & Mondal, A. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)
Partner: UNT Libraries Government Documents Department

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1993--January 15, 1994

Description: The overall objective of the research presented in this report is to advance the development and acceptance of thin-film photovoltaic modules by increasing the understanding of film growth and processing and its relationship to materials properties and solar cell performance. The specific means toward meeting this larger goal include: (1) investigating scalable, cost-effective deposition processes; (2) preparing thin-film materials and device layers and completed cell structures; (3) performing detailed material and device analysis; and (4) participating in collaborative research efforts that address the needs of PV-manufacturers. These objectives are being pursued with CuInSe{sub 2}, CdTe and a-Si based solar cells.
Date: September 1, 1994
Creator: Birkmire, R. W.; Phillips, J. E.; Buchanan, W. A.; Hegedus, S. S.; McCandless, B. E.; Shafarman, W. N. et al.
Partner: UNT Libraries Government Documents Department

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices: Final Report, 24 August 1998-23 October 2001

Description: This report describes results achieved during a three-year subcontract to develop and understand thin-film solar cell technology associated to CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.
Date: January 1, 2003
Creator: Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E. et al.
Partner: UNT Libraries Government Documents Department

Optimization of processing and modeling issues for thin film solar cell devices: Final report, February 3, 1997--September 1, 1998

Description: This final report describes results achieved under a 20-month NREL subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE's long-range efficiency, reliability and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development and improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to device structure and module encapsulation.
Date: February 28, 2000
Creator: Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S. & McCandless, B. E.
Partner: UNT Libraries Government Documents Department

Polycrystalline thin film materials and devices. Final subcontract report, 16 January 1990--15 January 1993

Description: This report describes results and conclusions of the final phase (III) of a three-year research program on polycrystalline thin-film heterojunction solar cells. The research consisted of the investigation of the relationships between processing, materials properties, and device performance. This relationship was quantified by device modeling and analysis. The analysis of thin-film polycrystalline heterojunction solar cells explains how minority-carrier recombination at the metallurgical interface and at grain boundaries can be greatly reduced by the proper doping of the window and absorber layers. Additional analysis and measurements show that the present solar cells are limited by the magnitude of the diode current, which appears to be caused by recombination in the space charge region. Developing an efficient commercial-scale process for fabricating large-area polycrystalline, thin-film solar cells from a research process requires a detailed understanding of the individual steps in making the solar cell, and their relationship to device performance and reliability. The complexities involved in characterizing a process are demonstrated with results from our research program on CuInSe{sub 2}, and CdTe processes.
Date: August 1, 1993
Creator: Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Hegedus, S. S.; McCandless, B. E. & Yokimcus, T. A.
Partner: UNT Libraries Government Documents Department

Processing and modeling issues for thin-film solar cell devices. Final report

Description: During the third phase of the subcontract, IEC researchers have continued to provide the thin film PV community with greater depth of understanding and insight into a wide variety of issues including: the deposition and characterization of CuIn{sub 1-x}Ga{sub x}Se{sub 2}, a-Si, CdTe, CdS, and TCO thin films; the relationships between film and device properties; and the processing and analysis of thin film PV devices. This has been achieved through the systematic investigation of all aspects of film and device production and through the analysis and quantification of the reaction chemistries involved in thin film deposition. This methodology has led to controlled fabrications of 15% efficient CuIn{sub 1-x}Ga{sub x}Se{sub 2} solar cells over a wide range of Ga compositions, improved process control of the fabrication of 10% efficient a-Si solar cells, and reliable and generally applicable procedures for both contacting and doping films. Additional accomplishments are listed below.
Date: November 1, 1997
Creator: Birkmire, R.W. & Phillips, J.E.
Partner: UNT Libraries Government Documents Department

Processing and modeling issues for thin-film solar cell devices: Annual subcontract report, January 16, 1995 -- January 15, 1996

Description: The overall mission of the Institute of Energy Conversion is the development of thin film photovoltaic cells, modules, and related manufacturing technology and the education of students and professionals in photovoltaic technology. The objectives of this four-year NREL subcontract are to advance the state of the art and the acceptance of thin film PV modules in the areas of improved technology for thin film deposition, device fabrication, and material and device characterization and modeling, relating to solar cells based on CuInSe{sub 2} and its alloys, on a-Si and its alloys, and on CdTe. In the area of CuInSe{sub 2} and its alloys, EEC researchers have produced CuIn{sub 1-x}GaxSe{sub 2} films by selenization of elemental and alloyed films with H{sub 2}Se and Se vapor and by a wide variety of process variations employing co-evaporation of the elements. Careful design, execution and analysis of these experiments has led to an improved understanding of the reaction chemistry involved, including estimations of the reaction rate constants. Investigation of device fabrication has also included studies of the processing of the Mo, US and ZnO deposition parameters and their influence on device properties. An indication of the success of these procedures was the fabrication of a 15% efficiency CuIn{sub 1-x}GaxSe{sub 2} solar cell.
Date: August 1, 1996
Creator: Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Eser, E.; Hegedus, S.S.; McCandless, B.E. et al.
Partner: UNT Libraries Government Documents Department

Processing and modeling issues for thin-film solar cell devices. Annual subcontract report, January 16, 1994--January 15, 1995

Description: This report describes results achieved during the second phase of a four year subcontract to develop and understand thin film solar cell technology related to a-Si and its alloys, CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2}, and CdTe. Accomplishments during this phase include, development of equations and reaction rates for the formation of CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} films by selenization, fabrication of a 15% efficient CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} cell, development of a reproducible, reliable Cu-diffused contact to CdTe, investigation of the role of CdTe-CdS interdiffusion on device operation, investigation of the substitution of HCl for CdCl{sub 2} in the post-deposition heat treatment of CdTe/CdS, demonstration of an improved reactor design for deposition of a-Si films, demonstration of improved process control in the fabrication of a ten set series of runs producing {approximately}8% efficient a-Si devices, demonstration of the utility of a simplified optical model for determining quantity and effect of current generation in each layer of a triple stacked a-Si cell, presentation of analytical and modeling procedures adapted to devices produced with each material system, presentation of baseline parameters for devices produced with each material system, and various investigations of the roles played by other layers in thin film devices including the Mo underlayer, CdS and ZnO in CuIn{sub 1{minus}x}Ga{sub x}Se{sub 2} devices, the CdS in CdTe devices, and the ZnO as window layer and as part of the back surface reflector in a-Si devices. In addition, collaborations with over ten research groups are briefly described. 73 refs., 54 figs., 34 tabs.
Date: June 1, 1995
Creator: Birkmire, R.W.; Phillips, J.E.; Buchanan, W.A.; Hegedus, S.S.; McCandless, B.E. & Shafarman, W.N.
Partner: UNT Libraries Government Documents Department

Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

Description: This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.
Date: August 25, 2000
Creator: Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Eser, E.; Hegedus, S.S. & McCandless, B.E. (Institute of Energy Conversion)
Partner: UNT Libraries Government Documents Department