131 Matching Results

Search Results

Advanced search parameters have been applied.

Electron attachment as a probe of photoionization processes in liquid media

Description: The effects of electron attaching additives on the photoionization threshold of pyrene in seven liquid media comprising a dielectric hydrocarbon liquid and an electron attaching additive, A, were studied. The photoionization threshold, I/sub L/, was found to be independent of the dielectric hydrocarbon liquid and the concentration of each A used. On the basis of these data it was concluded that in the presence of an efficient A at high concentrations, the photoejected electron is captured by A at times shorter than those required for electron solvation (or any possible trapping by the solvent) and that the photoionization process for a solute molecule in these dielectric liquids is probably completed at times less than or equal to 10/sup -14/ and greater than or equal to 10/sup -16/ s and its energetics are rather independent of the bulk properties of these liquids.
Date: January 1, 1981
Creator: Siomos, K.; Kourouklis, G.A. & Christophorou, L.G.
Partner: UNT Libraries Government Documents Department

Two dimensional NMR of liquids and oriented molecules

Description: Chapter 1 discusses the quantum mechanical formalism used for describing the interaction between magnetic dipoles that dictates the appearance of a spectrum. The NMR characteristics of liquids and liquid crystals are stressed. Chapter 2 reviews the theory of multiple quantum and two dimensional NMR. Properties of typical spectra and phase cycling procedures are discussed. Chapter 3 describes a specific application of heteronuclear double quantum coherence to the removal of inhomogeneous broadening in liquids. Pulse sequences have been devised which cancel out any contribution from this inhomogeneity to the final spectrum. An interpretation of various pulse sequences for the case of /sup 13/C and /sup 1/H is given, together with methods of spectral editing by removal or retention of the homo- or heteronuclear J coupling. The technique is applied to a demonstration of high resolution in both frequency and spatial dimensions with a surface coil. In Chapter 4, multiple quantum filtered 2-D spectroscopy is demonstrated as an effective means of studying randomly deuterated molecules dissolved in a nematic liquid crystal. Magnitudes of dipole coupling constants have been determined for benzene and hexane, and their signs and assignments found from high order multiple quantum spectra. For the first time, a realistic impression of the conformation of hexane can be estimated from these results. Chapter 5 is a technical description of the MDB DCHIB-DR11W parallel interface which has been set up to transfer data between the Data General Nova 820 minicomputer, interfaced to the 360 MHz spectrometer, and the Vax 11/730. It covers operation of the boards, physical specifications and installation, and programs for testing and running the interface.
Date: February 1, 1987
Creator: Gochin, M.
Partner: UNT Libraries Government Documents Department

Picosecond pulse radiolysis studies to understand the primary processes in radiolysis

Description: The use of pulse radiolysis to learn about processes which occur before the beginning of chemical times is discussed. Two examples, the distance distribution of positive and negative ions in hydrocarbons, and the state of the dry electron are discussed in detail.
Date: January 1, 1984
Creator: Jonah, C.D. & Lewis, M.A.
Partner: UNT Libraries Government Documents Department

Picosecond dynamics of reactions in the liquid phase: studies of iodine photodissociation and development of new laser techniques

Description: Iodine photodissociation and recombination was studied as a model for processes common to chemical reaction in the liquid phase. Picosecond transient absorption measurements from 1000 to 295 nm were used to monitor the dynamics in a variety of solvents. Most of the atoms which undergo geminate recombination were found to do so in less than or equal to 15 ps, in agreement with the results of existing molecular dynamics simulations. Vibrational relaxation times vary from approx.15 ps near the middle of the ground state well to approx.150 ps for complete relaxation to v = 0. The prediction of strong resonant vibrational energy transfer to chlorinated methane solvents was not supported, but some evidence for this mechanism was found for alkane solvents. Current theory is unable to explain the large variation (65 to 2700 ps) of the excited A'-state lifetime in various solvents. The 10-Hz amplified, synchronously-pumped dye laser which was used in these studies is described and characterized. SERS (Stimulated Electronic Raman Scattering) and difference frequency mixing were used in the generation of the infrared and far-infrared, respectively. 54 refs., 38 figs., 3 tabs. (WRF)
Date: September 1, 1985
Creator: Berg, M.A.
Partner: UNT Libraries Government Documents Department

Geothermal direct-contact heat exchange. Final report

Description: A glass direct contact heat exchange column was operated in the laboratory at atmospheric pressure using hot water and normal hexane. Column internals tested included an empty column, sieve trays, disk-and-doughnut trays, and two types of packing. Operation was very smooth in all cases and the minimum temperature approaches varied from less than 1{sup 0}C for packing to 13{sup 0}C for the empty column. High heat transfer rates were obtained in all cases, however, columns should be sized on the basis of liquid and vapor traffic. The solubilities of hydrocarbons were determined for normal hexane, pentane and butane in water and sodium chloride and calcium chloride brines at various temperatures. The values seem to be internally consistent and salt content was found to depress hydrocabon solubility. Laboratory stripping tests showed that gas stripping can be used to remove hydrocarbon from reject hot water from the direct contact heat exchange column. Although the gas volumes required are small, stripping gas requirements cannot be accurately predicted without testing. A computer program was used to study the effect of operating variables on thermodynamic cycle efficiencies. Optimum efficiencies for the moderate brine conditions studied were obtained with isopentane as working fluid and relatively low operating pressure. A preliminary design for a 50 MWe plant was prepared and plant capital cost and operating cost were estimated. These costs were combined with previously developed brine production and power transmission costs to provide an estimate of the cost of delivered power for a geothermal field at Heber, California. A pilot plant program is described that would be suitable for continuing the investigation of the direct contact process in the field. The program includes a suggested schedule and the estimated cost.
Date: June 10, 1976
Creator: Sims, A.V.
Partner: UNT Libraries Government Documents Department

Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

Description: Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.
Date: June 1, 1984
Creator: Campbell, J.R. & Luthy, R.G.
Partner: UNT Libraries Government Documents Department

Investigation of coal structure

Description: The method was applied to standard polymers under the same condition above. The particle size distribution with volume diameters of polyvinylpyrrolidone (average molecular mass; 10,000) was measured at sample/solvent = 0.50 g/100 ml. This polymer readily dissolve in methanol and water, while the polymer does not dissolve in n-hexane and toluene, and toluene is a slightly better solvent than n-hexane. Figure 3 shows the particle size distributions in n-hexane (a) and toluene (b-1 and -2). The distribution in toluene changed time to time, and two representative distributions are shown. The mean volume diameters-were 14 [mu]m in n-hexane and 18 and 31 [mu]m in toluene. The particle size distribution of cross-linked polyvinylpyrrolidone was further examined in methanol and n-hexane. Figure 4 compares these distributions with scanned counts at sample/solvent = 0.50 g/100 ml. As a significant portion of particles was over 250 [mu]m with volume diameters, the distributions are presented with scanned counts. Figure 4 compared the specific swelling ratio (Q') versus sample/solvent (w/w %) in the same solvents for this sample. It is seen that methanol is a good solvent than n-hexane and swells the sample. It is also seen that the swelling is dependent on the sample concentration. Therefore, the particle size in good solvent methanol is expected to be larger due to swelling. However, the particle size was smaller in methanol than in n-hexane (Figure 4). The dependence of sample concentration on solvent swelling in methanol (Figure 5) is interpreted as follows: Polymer particles disaggregated at low sample concentration and the interparticle voidage of the swollen polymer after centrifugation changed depending upon disaggregation.
Date: January 1, 1993
Creator: Available, Not
Partner: UNT Libraries Government Documents Department

NMR studies of molecules in liquid crystals and graphite

Description: NMR experiments to measure proton dipole couplings were performed on a series of n-alkanes (n-hexane through n-decane) dissolved in nematic liquid crystals. Computer modeling of the experimental NMR-spectra was done using several different models for intermolecular interactions in these systems. The model of Photinos et al. was found to be best in describing the intermolecular interactions in these systems and can provide a statistical picture of the conformation and orientation of the alkane molecules in their partially-oriented environment. Order parameters and conformational distributions for the alkanes can be calculated from the modeling. The alkanes are found to have conformational distributions very much like those found in liquid alkanes. Proton NMR spectra of tetrahydrofuran (THF) intercalated in two graphite intercalation compounds were also measured. Computer simulations of these spectra provide a picture of THF in the constrained environment between the graphene layers where the THF is oriented at a particular angle, can translate and rotate freely, but does not appear to pseudorotate.
Date: June 1, 1992
Creator: Rosen, M.E.
Partner: UNT Libraries Government Documents Department

Fischer-Tropsch synthesis in supercritical reaction media

Description: Our goals for this quarter were to complete construction of the reactor and analytical units for carrying out Fischer-Tropsch (F-T) synthesis in liquid (n-hexadecane) and in supercritical n-hexane phases. Progress during this quarter was slower than expected.
Date: January 1, 1993
Creator: Subramaniam, B.; Bochniak, D. & Snavely, K.
Partner: UNT Libraries Government Documents Department

Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

Description: A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.
Date: February 1, 1981
Creator: Demuth, O.J.
Partner: UNT Libraries Government Documents Department

Transuranic organometallics: The next generation

Description: Neptunium and plutonium metal react cleanly with 3/2 equiv. I{sub 2} in aprotic ligating solvents, L, such as tetrahydrofuran (THF), pyridine (Py), and dimethylsulfoxide (DMSO) to give the triiodide complexes as tetrasolvates, AnI{sub 3}(L){sub 4} (An = Np, L = THF (1)); An = Pu, L = THF (2a), Py (2b), and DMSO (2c). These triiodide complexes are convenient precursors to new transuranic compounds. Reaction of the triiodide complexes 1 and 2a hexane with 3 equiv. of sodium bis(trimethylsilyl)amide give the volatile, solvate-free tris(silylamide) complexes, An(N(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 3; An = Pu, 4). The silylamide complexes 3 and 4 undergo rapid reaction in hexane upon stoichiometric addition of HO-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3} to give the aryl oxide complexes An(O-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3}){sub 3} (An = Np, 5; An = Pu, 6). Preliminary investigations suggest that the aryl oxide complexes 5 and 6 react with lithium bis(trimethylsilyl)methanide, Li{sup +} CH(SiMe{sub 3}){sub 2}, in hexane to give the homoleptic alkyl complexes An(CH(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 7; An = Pu, 8). The homoleptic silylamide, aryl oxide, and alkyl complexes are the first to be reported for transuranic elements. 17 refs.
Date: January 1, 1990
Creator: Zwick, B.D.; Sattelberger, A.P. & Avens, L.R.
Partner: UNT Libraries Government Documents Department

The effect of rhenium, sulfur and alumina on the conversion of hydrocarbons over platinum single crystals: Surface science and catalytic studies

Description: Conversion reactions of hydrocarbons over Pt-Re model catalyst surfaces modified by sulfur and alumina have been studied. A plasma deposition source has been developed to deposit Pt, Re, and Al on metal substrates variable coverage in ultrahigh vacuum without excessive heating. Conversion of n-hexane was performed over the Re-covered Pt and Pt-covered Re surfaces. The presence of the second metal increased hydrogenolysis activity of both Pt-Re surfaces. Addition of sulfur on the model Catalyst surfaces suppressed hydrogenolysis activity and increased the cyclization rate of n-hexane to methylcyclopentane over Pt-Re surfaces. Sulfiding also increased the dehydrogenation rate of cyclohexane to benzene Over Pt-Re surfaces. It has been proposed that the PtRe bimetallic catalysts show unique properties when combined with sulfur, and electronic interactions exist between platinum, rhenium and sulfur. Decomposition of hydrocarbons on the sulfur-covered Pt-Re surfaces supported that argument. For the conversion of 1-butene over the planar Pt/AlO[sub x], the addition of Pt increased the selectivity of hydrogenation over isomerization.
Date: April 1, 1992
Creator: Kim, C.
Partner: UNT Libraries Government Documents Department

Inhalation developmental toxicology studies: Teratology study of n-hexane in mice: Final report

Description: Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppM with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5000-ppM group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5000-ppM exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor was there any increase in the incidence of combined malformations or variations. Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5000-ppM exposure level. Because of the significant increase in the number of resorptions at the 200-ppM exposure level, a no observable effect level (NOEL) for developmental toxicity was not established for exposure of mice to 200, 1000 or 5000-ppM n-hexane vapors. 21 refs., 3 figs., 9 tabs.
Date: May 1, 1988
Creator: Mast, T.J.; Decker, J.R.; Stoney, K.H.; Westerberg, R.B.; Evanoff, J.J.; Rommereim, R.L. et al.
Partner: UNT Libraries Government Documents Department

An investigation of catalytic active phase-support interactions by IR, NMR and x-ray absorption spectroscopies

Description: Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support interaction by spectroscopic methods and to correlate this structure with catalytic function. Two catalytic systems and their associated techniques (x-ray absorption and NMR) are discussed in this progress report. Firstly, the interaction of Pt-Ni supported on silica and L-zeolite are characterized and compared by x-ray absorption spectroscopy (EXAFS). Secondly, we present both experimental and calculational developments of NMR for the investigation of amorphous silica-alumina catalysts and/or supports.
Date: September 1, 1992
Creator: Haller, G.L.
Partner: UNT Libraries Government Documents Department

The dynamics of azulene in liquids and compressed gases on ultrafast timescales

Description: The ultrafast dynamics of vibrationally hot ground state azulene molecules have been time resolved by picosecond transient absorption spectroscopy in a variety of solvents including hexane, chloromethanes, methanol, CClF{sub 3}, Xe and Kr. A high pressure optical cell was used to liquify gases for use as solvents and change their density and temperature, independently, over the entire liquid density range. Experimental results indicate the vibrational cooling rate is strongly solvent dependent, with cooling rates of approximately 20 psec in molecular solvents and approximately 150 psec in atomic solvents. Comparison of the rates in Xe and Kr at constant density demonstrates the strong effect of solvent mass on energy transfer. The effect of solvent temperature on vibrational cooling is minimal, as is the effect of solvent density. This latter result is quite surprising in light of earlier experiments on simpler molecular systems, such as I{sub 2} in Xe. This anomalous density effect is examined in light of Isolated Binary Collision (IBC) theory and bulk thermal transport models. Both theories accurately model all experimental results obtained with the exception of the density effort. Possible explanations for the breakdown of the IBC theory in this case are offered along with methods to improve IBC theory for application to complex three dimensional molecular systems.
Date: February 1, 1992
Creator: Schultz, K.E.
Partner: UNT Libraries Government Documents Department

Super critical water oxidation on energetic materials

Description: Supercritical water oxidation (SCWO) is an innovative process for the destruction of hazardous wastes that occurs above the critical temperature and pressure of water. In this paper we present results for the oxidation of simple organic wastes and the destruction of explosives. We have tested a 50 gal./day mobile tubular reactor using both acetone and hexane as surrogate aqueous wastes in reaction with excess oxygen. For acetone, our results indicate that the fuel and oxidant can be conveniently premixed before heating and the acetone effectively destroyed (>99.999%). By contrast, hexane, and likely other insoluble flammable organics must be separately preheated to above the critical temperature of water to avoid detonation. With regards to the treatment of explosives, we have demonstrated detection-sensitivity-limited destruction (typically >99.9%) of five explosives, HMX, RDX, TNT, NQ, and PETN, in a smaller scale SCWO reactor. Two alternative methods of increasing processing throughput for explosives, which have very low solubility in water at room temperature, were also investigated. They are the use of slurries and the SCWO postprocessing of the products of explosives hydrolyzed in low-temperature, basic solutions.
Date: January 1, 1993
Creator: Sanchez, J.A.
Partner: UNT Libraries Government Documents Department

Electron transport in non-polar liquids as revealed by high pressure studies and Hall mobility measurements

Description: Several significant advances have been made recently in our studies of excess electrons in non-polar liquids. These studies provide insight into the transport and chemical reactions of electrons. From high pressure studies, up to 3000 atmospheres, information about volume changes for electron transition is obtained. Hall mobility measurements, which are electron drift studies done in crossed magnetic and electric fields, reveal the transport properties of electrons in the conduction band. 8 refs., 1 tab.
Date: January 1, 1988
Creator: Holroyd, R.
Partner: UNT Libraries Government Documents Department

Inhalation reproductive toxicology studies: Sperm morphology study of n-hexane in B6C3F1 mice: Final report

Description: The straight-chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent routinely used in industrial environments. Although myelinated nerve tissue is the primary target organ of hexane, the testes have also been identified as being sensitive to hexacarbon exposure. The objective of this study was to evaluate the epididymal sperm morphology of male B6D3F1 mice 5 weeks after exposure to 0, 200, 1000, or 5000 ppM n-hexane, 20 h/day for 5 consecutive days. Two concurrent positive control groups of animals were injected intraperitoneally with either 200 or 250 mg/kg ethyl methanesulfonate, a known mutagen, once each day for 5 consecutive days. The mice were weighed just prior to the first day of exposure and at weekly intervals until sacrifice. During the fifth post-exposure week the animals were killed and examined for gross lesions of the reproductive tract and suspensions of the epididymal sperm were prepared for morphological evaluations. The appearance and behavior of the mice were unremarkable throughout the experiment and there were no deaths. No evidence of lesions in any organ was noted at sacrifice. Mean body weights of male mice exposed to n-hexane were not significantly different from those for the 0-ppM animals at any time during the study. Analyses of the sperm morphology data obtained 5 weeks post-exposure (the only time point examined) indicated that exposure of male mice to relatively high concentrations of n-hexane vapor for 5 days produced no significant effects on the morphology of sperm relative to that of the 0-ppM control group. 24 refs., 2 figs., 7 tabs.
Date: August 1, 1988
Creator: Mast, T.J.; Hackett, P.L.; Decker, J.R.; Westerberg, R.B.; Sasser, L.B.; McClanahan, B.J. et al.
Partner: UNT Libraries Government Documents Department

Amorphous powders of Al-Hf prepared by mechanical alloying

Description: We synthesized amorphous Al/sub 50/Hf/sub 50/ alloy powder by mechanically alloying an equimolar mixture of crystalline powders of Al and Hf using hexane as a dispersant. We characterized the powder as a function of mechanical-alloying time by scanning electron microscopy, x-ray diffraction, and differential scanning calorimetry. Amorphous Al/sub 50/Hf/sub 50/ powder heated at 10 K s/sup /minus/1/ crystallizes polymorphously at 1003 K into orthorhombic AlHf (CrB-type structure). During mechanical alloying, some hexane decomposes and hydrogen and carbon are incorporated into the amorphous alloy powder. The hydrogen can be removed by annealing the powder by hot pressing at a temperature approximately 30 K below the crystallization temperature. The amorphous compacts have a diamond pyramidal hardness of 1025 DPH. 24 refs., 7 figs., 1 tab.
Date: January 1, 1988
Creator: Schwarz, R.B.; Hannigan, J.W.; Sheinberg, H. & Tiainen, T.
Partner: UNT Libraries Government Documents Department

Inhalation reproductive toxicology studies: Male dominant lethal study of n-hexane in Swiss (CD-1) mice: Final report

Description: The straight-chain hydrocarbon, n-hexane, is a volatile, ubiquitous solvent routinely used in industrial environments; consequently, the opportunity for industrial, environmental or accidental exposure to hexane vapors is significant. Although myelinated nerve tissue is the primary target organ of hexane, the testes have also been identified as being sensitive to hexacarbon exposure. The objective of this study was to evaluate male dominant lethal effects in Swiss (CD-1) mice after exposure to 0, 200, 1000, or 5000 ppM n-hexane, 20 h/day for 5 consecutive days. Each exposure concentration consisted of 30 randomly selected, proven male breeders; 4 groups. The mice were weighed just prior to the first day of exposure and at weekly intervals until sacrifice. Ten males in each dose group were sacrificed one day after the cessation of exposure, and their testes and epididymides were removed for evaluation of the germinal epithelium. The remaining male mice, 20 per group, were individually housed in hanging wire-mesh breeding cages where they were mated with unexposed, virgin females for eight weekly intervals; new females were provided each week. The mated females were sacrificed 12 days after the last day of cohabitation and their reproductive status and the number and viability of the implants were recorded. The appearance and behavior of the male mice were unremarkable throughout the study period and no evidence of n-hexane toxicity was observed. 18 refs., 3 figs., 11 tabs.
Date: August 1, 1988
Creator: Mast, T.J.; Rommereim, R.L.; Evanoff, J.J.; Sasser, L.B.; Decker, J.R.; Stoney, K.H. et al.
Partner: UNT Libraries Government Documents Department

Fischer-Tropsch synthesis in supercritical reaction media

Description: The goal of this research is to thoroughly investigate the feasibility of using supercritical fluid (SCF) solvent medium for carrying out Fischer-Tropsch (FT) synthesis. Research will address the systematic experimental investigations of FT synthesis over supported Fe and Co catalysts in a CSTR and in a fixed-bed reactor at typical synthesis temperatures (240-260[degrees]C). The SCF medium to be employed is n-Hexane (P[sub c] = 29.7 bar; [Tc] = 233.7[degrees]C), while n-Hexadecane will be employed as the liquid reaction medium. Overall conversion, product distribution and catalyst deactivation will be measured in each case for various feed H[sub 2]/CO ratios ranging from 0.5 to 2. Product analyses will be carried out using GC/TCD, GC/FID and GC/MS systems. The fresh and used catalysts will be characterized with respect to active metal dispersion, surface area and pore size distribution.
Date: October 1, 1992
Creator: Subramaniam, B.
Partner: UNT Libraries Government Documents Department

(Photoexcited charge pair escape and recombination)

Description: Progress in four research areas on this project are summarized under the following topics: (1) Geminate charge pair recombination in hexane; (2) Fast current measurements resulting from excitation of charge transfer (CT) states; (3) Measurement of the dipole moment of excited states by DC conductivity; and (4) Charge separation at macroscopic interfaces between electron donor and acceptor solids. In a final section, personnel who have contributed to the project during the past budget period are described.
Date: January 1, 1990
Creator: Braun, C.L.
Partner: UNT Libraries Government Documents Department

Condensing curves for a number of mixed-hydrocarbon working fluids

Description: Condensing curves are presented for a number of two-component mixed hydrocarbon working fluids which are potentially usable in binary geothermal cycles. Performance of geothermal thermodynamic cycles incorporating these fluids has been evaluated under separate cover; two figures summarizing the results of those evaluations have been included here for continuity. The purpose of this report is: first, to document the condensing curves which were used in the mixed fluid cycle analyses, and second, to provide background useful in the preliminary evaluation of heat rejection systems for advanced geothermal electric power plants utilizing mixed hydrocarbon working fluids. Some concluding remarks are presented.
Date: July 1, 1981
Creator: Denmuth, O.J.
Partner: UNT Libraries Government Documents Department