5 Matching Results

Search Results

Advanced search parameters have been applied.

Development of intelligent simulations at LLNL

Description: The Virtual Commander Project (VCom) is developing a capability for semiautomated optimal control of simulation entities. Properties of our control paradigm are goal-directed planning, hierarchical plan generation, automated fault detection, adaptive plan repair, and optimized cooperation and coordination among units, in addition to more conventional rule-driven behaviors. VCom has been applied to planning armor engagements at the battalion level and below. We are currently investigating movement-to-contact and fire-and-movement maneuvers. These capabilities will be demonstrated in April in conjunction with the Joint Conflict Model (JCM) a large, entity-level, constructive combat simulation. Both simulations have been developed to interoperate in a distributed computing environment using Distributed Interactive Simulation (DIS) protocols. Prototype applications have been demonstrated in other civilian and military contexts. A focus of our current work is the rapid prototyping of such applications.
Date: March 1, 1994
Creator: Cunningham, C. T.
Partner: UNT Libraries Government Documents Department

Impact of a reduced nuclear weapons stockpile on strategic stability

Description: This presentation is to discuss the impact of a reduced nuclear weapons stockpile on the strategic stability. Methodologies used to study strategic stability issues include what are basically strategic-force exchange models. These models are used to simulate a massive nuclear exchange in which one side attacks and the other side retaliates. These models have been of interest to the Strategic Defense Initiative (SDI) program. Researchers have been looking at issues concerning the stability of the transition period, during which some defenses have been deployed and during which deterrence and war-fighting capability reply partly on defense and partly on offense. Also, more recently, with interest in the Strategic Arms Reduction Treaty (START) and force reductions beyond START, the same calculation engines have been used to examine the impact of reduced forces on strategic stability. For both the SDI and the START reduction cases, exchange models are able to address only a rather narrow class of strategic stability issues. Other broader stability questions that are unrelated to nuclear weapons or that relate to nuclear weapons but are not addressed by the calculational tools which are not included in this discussion. 6 refs., 1 fig., 1 tab. (BN)
Date: March 20, 1991
Creator: Chrzanowski, P.
Partner: UNT Libraries Government Documents Department

Composing simulations using persistent software components

Description: The traditional process for developing large-scale simulations is cumbersome, time consuming, costly, and in some cases, inadequate. The topics of software components and component-based software engineering are being explored by software professionals in academic and industrial settings. A component is a well-delineated, relatively independent, and replaceable part of a software system that performs a specific function. Many researchers have addressed the potential to derive a component-based approach to simulations in general, and a few have focused on military simulations in particular. In a component-based approach, functional or logical blocks of the simulation entities are represented as coherent collections of components satisfying explicitly defined interface requirements. A simulation is a top-level aggregate comprised of a collection of components that interact with each other in the context of a simulated environment. A component may represent a simulation artifact, an agent, or any entity that can generated events affecting itself, other simulated entities, or the state of the system. The component-based approach promotes code reuse, contributes to reducing time spent validating or verifying models, and promises to reduce the cost of development while still delivering tailored simulations specific to analysis questions. The Integrated Virtual Environment for Simulation (IVES) is a composition-centered framework to achieve this potential. IVES is a Java implementation of simulation composition concepts developed at Los Alamos National Laboratory for use in several application domains. In this paper, its use in the military domain is demonstrated via the simulation of dismounted infantry in an urban environment.
Date: March 1999
Creator: Holland, J. V.; Michelsen, R. E.; Powell, D. R.; Upton, S. C. & Thompson, D. R.
Partner: UNT Libraries Government Documents Department

Non-lethal weapons and the future of war

Description: This presentation provides a discussion of the expanding role of non-lethal weapons as envisioned necessary in future warfare.
Date: March 9, 1995
Creator: Alexander, J.B.
Partner: UNT Libraries Government Documents Department

Nuclear deterrence and disarmament after the Cold War

Description: During the Cold War, nuclear arms control measures were shaped significantly by nuclear doctrine. Consequently, the negotiation of arms control agreements often became a battleground for different nuclear strategies. The Cold War between the United States and the Soviet Union has been declared over. Today, both nuclear weapons policies and arms control objectives are again being reviewed. This document discusses points of this review.
Date: March 1, 1995
Creator: Lehman, R.F. II
Partner: UNT Libraries Government Documents Department