4 Matching Results

Search Results

Advanced search parameters have been applied.

Infrasonic observation of earthquakes

Description: Infrasound signals generated by earthquakes have been detected at arrays operated by the Los Alamos National Laboratory. Three modes of propagation are possible and all have been observed by the authors. The observations suggest that regions remote from the epicenters are excited and may serve as secondary source regions. A relation is found between the normalized peak amplitudes and the seismic magnitudes.
Date: December 31, 1998
Creator: Mutschlecner, J.P. & Whitaker, R.W.
Partner: UNT Libraries Government Documents Department

Phase synchronization of multiple klystrons in RF system

Description: The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of the Acceleration Production of Tritium (APT) accelerator. The first LEDA RF system includes three, 1.2 MW, 350 MHz, continuous wave, klystrons driving a radio frequency quadrupole (RFQ). A phase control loop is necessary for each individual klystron in order to guarantee the phase matching of these klystrons. To meet this objective, they propose adaptive PI controllers which are based on simple adaptive control. These controllers guarantee not only phase matching but also amplitude matching.
Date: December 31, 1998
Creator: Kwon, S.; Regan, A.; Wang, Y.M. & Rohlev, T.
Partner: UNT Libraries Government Documents Department

Infrasound from the El Paso super-bolide of October 9, 1997

Description: During the noon hour on October 9, 1997 an extremely bright fireball ({approx}-21.5 in stellar magnitude putting it into the class of a super-bolide) was observed over western Texas with visual sightings from as far away as Arizona to northern Mexico and even in northern New Mexico over 300 miles away. This event produced tremendously loud sonic boom reports in the El Paso area. It was also detected locally by 4 seismometers which are part of a network of 5 seismic stations operated by the University of Texas at El Paso (UTEP). Subsequent investigations of the data from the six infrasound arrays used by LANL (Los Alamos National Laboratory) and operated for the DOE (Department of Energy) as a part of the CTB (Comprehensive Test Ban) Research and Development program for the IMS (International Monitoring System) showed the presence of an infrasonic signal from the proper direction at the correct time for this super-bolide from two of the six arrays. Both the seismic and infrasound recordings indicated that an explosion occurred in the atmosphere at source heights from 28--30 km, having its epicenter slightly to the northeast of Horizon City, Texas. The signal characteristics, analyzed from {approx}0.1 to 5.0 Hz, include a total duration of {approx}4 min (at Los Alamos, LA) to >{approx}5 min at Lajitas, Texas, TXAR, another CTB IMS array operated by E. Herrin at Southern Methodist University (SMU) for a source directed from LA toward {approx}171--180 deg and from TXAR of {approx}321-4 deg respectively from true north. The observed signal trace velocities (for the part of the recording with the highest cross-correlation) at LA ranged from 300--360 m/sec with a signal velocity of 0.30 {+-} 0.03 km/sec, implying a Stratospheric (S Type) ducted path. The dominant signal frequency at LA was from 0.20 to 0.80 Hz, with ...
Date: December 31, 1998
Creator: ReVelle, D.O.; Whitaker, R.W. & Armstrong, W.T.
Partner: UNT Libraries Government Documents Department

Amplitude path corrections for regional phases in China

Description: The authors investigate the effectiveness of amplitude path corrections for regional phases on seismic event discrimination and magnitude estimation. Waveform data from digital stations in China for regional, shallow (< 50 km) events were obtained from the IRIS Data Management Center (DMC) for years 1986 to 1996 using the USGS Preliminary Determination of Epicenters (PDE) and the Chinese State Seismological Bureau (SSB) catalogs. For each event, the amplitudes for each regional phase (P{sub n}, P{sub g}, S{sub n}, L{sub g}) were measured, as well as the P{sub g} and L{sub g} coda. Measured amplitudes were corrected for source scaling using estimates of m{sub b} and for distance using a power law that accounts for attenuation and spreading. The amplitude residuals were interpolated and mapped as 2-D amplitude correction surfaces. The authors employ several methods to create the amplitude correction surfaces: a waveguide method, and two interpolation methods (Baysian kriging and a circular moving window mean smoother). They explore the sensitivities of the surfaces to the method and to regional propagation, and apply these surfaces to correct amplitude data to reduce scatter in discrimination ratios and magnitude estimates.
Date: December 31, 1998
Creator: Phillips, W.S.; Velasco, A.A.; Taylor, S.R. & Randall, G.E.
Partner: UNT Libraries Government Documents Department