5 Matching Results

Search Results

Advanced search parameters have been applied.

Amplitude and phase modulation with waveguide optics

Description: We have developed amplitude and phase modulation systems for glass lasers using integrated electro-optic modulators and solid state high- speed electronics. The present and future generation of lasers for Inertial Confinement Fusion require laser beams with complex temporal and phase shaping to compensate for laser gain saturation, mitigate parametric processes such as transverse stimulated Brillouin scattering in optics, and to provide specialized drive to the fusion targets. These functions can be performed using bulk optoelectronic modulators, however using high-speed electronics to drive low voltage integrated optical modulators has many practical advantages. In particular, we utilize microwave GaAs transistors to perform precision, 250 ps resolution temporal shaping. Optical bandwidth is generated using a microwave oscillator at 3 GHz amplified by a solid state amplifier. This drives an integrated electrooptic modulator to achieve laser bandwidths exceeding 30 GHz.
Date: December 17, 1996
Creator: Burkhart, S.C.; Wilcox, R.B.; Browning, D. & Penko, F.A.
Partner: UNT Libraries Government Documents Department

Reaction theories for N* excitations in {pi}N and {gamma}N reactions

Description: The importance of developing reaction theories for investigating N* physics is illustrated in an analysis of pion photoproduction on the nucleon. It is shown that the {gamma}N {leftrightarrow} {Delta} transition amplitudes predicted by the constituent quark model are in agreement with the values extracted from the {gamma}N {r_arrow} {pi}N data only when the contributions from the reaction mechanisms calculated using a dynamical approach are taken into account in the analysis.
Date: December 31, 1996
Creator: Lee, T. S. H.
Partner: UNT Libraries Government Documents Department

Nucleon-nucleon interactions

Description: Nucleon-nucleon interactions are at the heart of nuclear physics, bridging the gap between QCD and the effective interactions appropriate for the shell model. We discuss the current status of {ital NN} data sets, partial-wave analyses, and some of the issues that go into the construction of potential models. Our remarks are illustrated by reference to the Argonne {ital v}{sub 18} potential, one of a number of new potentials that fit elastic nucleon-nucleon data up to 350 MeV with a {Chi}{sup 2} per datum near 1. We also discuss the related issues of three-nucleon potentials, two-nucleon charge and current operators, and relativistic effects. We give some examples of calculations that can be made using these realistic descriptions of {ital NN} interactions. We conclude with some remarks on how our empirical knowledge of {ital NN} interactions may help constrain models at the quark level, and hence models of nucleon structure.
Date: December 31, 1996
Creator: Wiringa, R.B.
Partner: UNT Libraries Government Documents Department

Vibration modal analysis using all-optical photorefractive processing

Description: A new experimental method for vibration modal analysis based on all- optical photorefractive processing is presented. The method utilizes an optical lock-in approach to measure phase variations in light scattered from optically rough, continuously vibrating surfaces. In this four-wave mixing technique, all-optical processing refers to mixing the object beam containing the frequency modulation due to vibration with a single frequency modulated pump beam in the photorefractive medium that processes the modulated signals. This allows for simple detection of the conjugate wavefront image at a CCD. The conjugate intensity is shown to be a function of the first-order ordinary Bessel function and linearly dependent on the vibration displacement induced phase. Furthermore, the results demonstrate the unique capabilities of the optical lock-in vibration detection technique to measure vibration signals with very narrow bandwidth (< 1 Hz) and high displacement sensitivity (sub-Angstrom). This narrow bandwidth detection can be achieved over a wide frequency range from the photorefractive response limit to the reciprocal of the photoinduced carrier recombination time. The technique is applied to determine the modal characteristics of a rigidly clamped circular disc from 10 kHz to 100 kHz.
Date: December 31, 1996
Creator: Hale, T. & Telschow, K.
Partner: UNT Libraries Government Documents Department

Prospects of a baryon instability search in neutron-antineutron oscillations

Description: The purpose of this article is to review the current status and the future prospects for an experimental neutron-antineutron transition search. Traditional and new experimental techniques are discussed here. In the n {r_arrow} {anti n} search in experiments at existing reactors, it would be possible to increase the discovery potential up to four orders of magnitude for vacuum n {r_arrow} {anti n} transitions relative to the existing experimental level or to achieve the limit of {tau}{sub n-{anti n}{sup {approximately}}} 10{sup 10}s.. With dedicated future reactors and an ultimate experimental layout, it might be possible to reach the limit of 10{sup 11}s. Significant progress in an intranuclear n {r_arrow} {anti n} transition search expected to be made during the next decade by the SuperKamiokande and Icarus detectors. It can be matched, or even exceeded, in a new alternative approach, where unstable long-lived isotopes of technetium are searched in non radioactive deep-mined ores.
Date: December 31, 1996
Creator: Efremenko, Yu. & Kamyshkov, Yu.
Partner: UNT Libraries Government Documents Department