170 Matching Results

Search Results

Advanced search parameters have been applied.

Tank 241-TX-118, core 236 analytical results for the final report

Description: This document is the analytical laboratory report for tank 241-TX-118 push mode core segments collected between April 1, 1998 and April 13, 1998. The segments were subsampled and analyzed in accordance with the Tank 241-TX-118 Push Mode Core sampling and Analysis Plan (TSAP) (Benar, 1997), the Safety Screening Data Quality Objective (DQO) (Dukelow, et al., 1995), the Data Quality Objective to Support Resolution of the Organic Complexant Safety Issue (Organic DQO) (Turner, et al, 1995) and the Historical Model Evaluation Data Requirements (Historical DQO) (Sipson, et al., 1995). The analytical results are included in the data summary table (Table 1). None of the samples submitted for Differential Scanning Calorimetry (DSC) and Total Organic Carbon (TOC) exceeded notification limits as stated in the TSAP (Benar, 1997). One sample exceeded the Total Alpha Activity (AT) analysis notification limit of 38.4{micro}Ci/g (based on a bulk density of 1.6), core 236 segment 1 lower half solids (S98T001524). Appropriate notifications were made. Plutonium 239/240 analysis was requested as a secondary analysis. The statistical results of the 95% confidence interval on the mean calculations are provided by the Tank Waste Remediation Systems Technical Basis Group in accordance with the Memorandum of Understanding (Schreiber, 1997) and are not considered in this report.
Date: November 19, 1998
Creator: ESCH, R.A.
Partner: UNT Libraries Government Documents Department

Water permeability and related rock properties measured on core samples from the Yucca Mountain USW GU-3/G-3 and USW G-4 boreholes, Nevada Test Site, Nevada

Description: Core samples were measured for bulk density, grain density, porosity, resistivity, and water permeability as part of a comprehensive geologic investigation designed to determine the suitability of Yucca Mountain as a site for the containment of high-level radioactive waste products. The cores were selected at the drill sites so as to be representative of the major lithologic variations observed within stratigraphic units of the Paintbrush Tuff, Calico Hills Tuff, Crater Flat Tuff, Lithic Ridge Tuff, and Older Tuffs. Dry and saturated bulk density, grain density, and porosity measurements were made on the core samples principally to establish that a reasonable uniformity exists in the textural and mineral character of the sample pairs. Electrical resistivity measured on sample pairs tended to be lower along the plane transverse to the vertical axis of the drill core herein referred to as the horizontal plane. Permeability values, ranging from virtually zero (<.02 microdarcies) to over 200 millidarcies, also indicate a preferential flow direction along the horizontal plane of the individual tuff units. Permeability decreases with flow duration in all but the non-welded tuffs as unconsolidated particles within the pore network are repositioned so as to impede the continued flow of water through the rock. Reversing flow direction initially restores the permeability of the rock to its original or maximum value.
Date: September 1, 1994
Creator: Anderson, L.A.
Partner: UNT Libraries Government Documents Department

An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

Description: Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.
Date: April 1, 1994
Creator: Boyd, P.J.; Martin, R.J. III & Price, R.H.
Partner: UNT Libraries Government Documents Department

Results of rock property measurements made on core samples from Yucca Mountain boreholes, Nevada Test Site, Nevada; Part 1, Boreholes UE25A-4, -5, -6, and -7; Part 2, Borehole UE25PNo.1

Description: Laboratory measurements of resistivity, bulk and grain density, porosity, compressional sonic velocity, water permeability, magnetic susceptibility, and remanent magnetization were made on core samples from Yucca Mountain boreholes located in Drill Hole Wash at the Nevada Test Site. The samples are representative of lithologic variations to be found in the Tiva Canyon, Yucca Mountain, Pah Canyon, and the upper Topopah Spring Members of the Paintbrush Tuff. Boreholes penetrated to a depth of approximately 152 meters (500 ft.). The Paintbrush Tuff consists primarily of nonwelded to densely welded rhyolitic ash-flow tuff with relatively thin beds of ash-fall tuff typically separating each Member. Resistivity and bulk density measurements were made on samples containing natural pore waters and repeated following resaturation with local tap water. Density comparisons indicate the samples to be undersaturated in their natural environment as expected in that the boreholes did not intersect the water table.
Date: December 31, 1991
Creator: Anderson, L.A.
Partner: UNT Libraries Government Documents Department

NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

Description: Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur ...
Date: March 15, 1999
Creator: Zauderer, Dr. Bert
Partner: UNT Libraries Government Documents Department

Geohydrologic data from test hole USW UZ-6s, Yucca Mountain, Nye County, Nevada

Description: As part of the investigation of Yucca Mountain, Nevada, as a potential site for storing high-level radioactive wastes in an underground mined geologic repository, the US Geological Survey, in cooperation with the US Department of Energy, in 1982, began drilling a series of test holes in and near the southwestern part of the Nevada Test Site to determine the geologic and hydrologic characteristics of the area. Test hole USW UZ-6s is part of that series of test holes, and this report presents data obtained from test hole USW UZ-6s. The data includes those from drilling operations, lithology, coring, and laboratory analyses of hydrologic properties, which include gravimetric water content, water potential, and bulk- and grain-density values. The gravimetric water content of the densely welded section of the Tiva Canyon Member of the Paintbrush Tuff averages 0.027 gram per gram for test hole USW UZ-6s; water potential averages {minus}7,200 kilo-pascals; gravimetric water content of the moderately to densely welded tuffs range from 0.054 gram per gram for the Tiva Canyon Member of the Paintbrush Tuff to 0.027 gram per gram for the Topopah Spring Member of the Paintbrush Tuff; and water potentials range from {minus}6,700 to {minus}3,400 kilopascals. Gravimetric water content for the partially welded to unnamed bedded tuffs average 0.123, 0.106, and 0.085 gram per gram for the Tiva Canyon Member, the unnamed bedded tuffs, and the Topopah Spring Member in test hole USW UZ-6s; average water potentials for these units are {minus}1,700, {minus}480, and {minus}820 kilopascals.
Date: December 31, 1993
Creator: Loskot, C.L.
Partner: UNT Libraries Government Documents Department

Unsaturated fractured rock characterization methods and data sets at the Apache Leap Tuff Site

Description: Performance assessment of high-level nuclear waste containment feasibility requires representative values of parameters as input, including parameter moments, distributional characteristics, and covariance structures between parameters. To meet this need, characterization methods and data sets for interstitial, hydraulic, pneumatic and thermal parameters for a slightly welded fractured tuff at the Apache Leap Tuff Site situated in central Arizona are reported in this document. The data sets include the influence of matric suction on measured parameters. Spatial variability is investigated by sampling along nine boreholes at regular distances. Laboratory parameter estimates for 105 core segments are provided, as well as field estimates centered on the intervals where the core segments were collected. Measurement uncertainty is estimated by repetitively testing control samples. 31 refs., 10 figs., 21 tabs.
Date: August 1, 1990
Creator: Rasmussen, T.C.; Evans, D.D.; Sheets, P.J. & Blanford, J.H.
Partner: UNT Libraries Government Documents Department

Development of dense ceramic membranes for methane conversion

Description: The most significant cost associated with partial oxidation of methane to syngas is that of the oxygen plant. In this paper, the authors offer a technology, based on dense ceramic membranes, that uses air as the oxidant for methane conversion reactions, thus eliminating the need for the oxygen plant. Certain ceramic materials exhibit both electronic and ionic conductivities (of particular interest is oxygen-ion conductivity). These materials transport not only oxygen ions (functioning as selective oxygen separators) but also electrons back from the reactor side to the oxygen/reduction interface. No external electrodes are required, and, if the driving potential of transport is adequate, the partial oxidation reactions should be spontaneous. Such a system will operate without an externally applied potential. Oxygen is transported across the ceramic material in the form of oxygen ions, not oxygen molecules. Recent reports in the literature suggest that dense ceramic membranes made of these mixed conductors can successfully separate oxygen from air at flux rates that could be considered commercially feasible. Thus, these membranes have the potential to improve the economics of methane conversion processes. In principle, the dense ceramic materials can be shaped into hollow-tube reactors, in which air passes over the outside of the membrane and methane flows through the inside. The surfaces can also be reversed. The membrane is permeable to oxygen at high temperatures, but not to nitrogen or other gases. Thus, only oxygen from air can be transported through the membrane to the inside of the reactor surface, where it reacts with methane. Other geometric forms, such as honeycombs or corrugations, of the reactor are possible and can provide substantially greater surface areas for reaction.
Date: June 1, 1995
Creator: Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Ma, B.; Mieville, R.L.; Kleefisch, M.S. et al.
Partner: UNT Libraries Government Documents Department

Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

Description: A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection.
Date: December 31, 1995
Creator: Soukup, J.D. & Erpenbeck, G.J.
Partner: UNT Libraries Government Documents Department

Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

Description: Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.
Date: October 1, 1995
Creator: Ahrens, E.H. & Hansen, F.D.
Partner: UNT Libraries Government Documents Department

Preliminary studies of a continuous process for the thermal decomposition of uranyl nitrate hexahydrate

Description: At the request of the A.E.C., experiments were conducted on the continuous addition of liquid UNH to a bed of powdered UO{sub 3} in a gas heated pot in the Pot Room of Plant 6 to gather thermal data regarding the continuous decomposition of UNH and to make observations of the physical behavior of such a system. The thermal data indicate that the size and the energy requirements of the equipment required per pound of UO{sub 3} produced would be considerably smaller than for the present batch-wise process. The products of the reactions through all the successive stages were more dense than the products of the present process. The metal yields in the reduction stage were 98.5%, 97.6% and 97.8%. The yield of 98.5% in the one reactor indicates that this process will produce UF{sub 4} capable of producing as high yields as any yet made. The lower yields in the other two cases fall within the present control limits for yield. The determination of the physical and chemical properties has not yet been completed and will be reported shortly in a subsequent paper.
Date: December 7, 1950
Creator: Shelley, W.
Partner: UNT Libraries Government Documents Department

Rapid estimate of solid volume in large tuff cores using a gas pycnometer

Description: A thermally insulated, rigid-volume gas pycnometer system has been developed. The pycnometer chambers have been machined from solid PVC cylinders. Two chambers confine dry high-purity helium at different pressures. A thick-walled design ensures minimal heat exchange with the surrounding environment and a constant volume system, while expansion takes place between the chambers. The internal energy of the gas is assumed constant over the expansion. The ideal gas law is used to estimate the volume of solid material sealed in one of the chambers. Temperature is monitored continuously and incorporated into the calculation of solid volume. Temperature variation between measurements is less than 0.1{degrees}C. The data are used to compute grain density for oven-dried Apache Leap tuff core samples. The measured volume of solid and the sample bulk volume are used to estimate porosity and bulk density. Intrinsic permeability was estimated from the porosity and measured pore surface area and is compared to in-situ measurements by the air permeability method. The gas pycnometer accommodates large core samples (0.25 m length x 0.11 m diameter) and can measure solid volume greater than 2.20 cm{sup 3} with less than 1% error.
Date: September 1, 1996
Creator: Thies, C.; Geddis, A.M. & Guzman, A.G.
Partner: UNT Libraries Government Documents Department

Mechanical behavior of robocast alumina

Description: Direct fabrication of alumina parts by robocasting was completed. This method is based on three-dimensional deposition of binderless aqueous alumina slurries. Parts were made with different deposition paths and mechanical testing performed to determine the effects of bead alignment. Properties were also compared to alumina processed more traditionally.
Date: December 1, 1998
Creator: Denham, H.B.; Cesarano, J. III; King, B.H. & Calvert, P.
Partner: UNT Libraries Government Documents Department

Advances in beryllium powder consolidation simulation

Description: A fuzzy logic based multiobjective genetic algorithm (GA) is introduced and the algorithm is used to optimize micromechanical densification modeling parameters for warm isopressed beryllium powder, HIPed copper powder and CIPed/sintered and HIPed tantalum powder. In addition to optimizing the main model parameters using the experimental data points as objective functions, the GA provides a quantitative measure of the sensitivity of the model to each parameter, estimates the mean particle size of the powder, and determines the smoothing factors for the transition between stage 1 and stage 2 densification. While the GA does not provide a sensitivity analysis in the strictest sense, and is highly stochastic in nature, this method is reliable and reproducible in optimizing parameters given any size data set and determining the impact on the model of slight variations in each parameter.
Date: December 1, 1998
Creator: Reardon, B. J.
Partner: UNT Libraries Government Documents Department

Dimensional stability and tensile strength of irradiated Nicalon-CG and Hi-Nicalon SiC fibers

Description: Nicalon-CG and Hi-Nicalon fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC at a nominal irradiation temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. The results indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon-CG possessed a higher tensile strength than hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon-CG exhibited unacceptable irradiation-induced shrinkage. Loss o fiber tensile strength after irradiation is shown to reduce the flexural strength of irradiated composites and Nicalon-CG fiber shrinkage observed in irradiated composites.
Date: May 1, 1997
Creator: Youngblood, G.E.; Henager, C.H. Jr.; Senor, D.J.; Newsome, G.A. & Woods, J.J.
Partner: UNT Libraries Government Documents Department

Laboratory analysis of soil hydraulic properties of CDBM 2 and CDBM 3 samples

Description: Daniel B. Stephens & Associates, Inc. (DBS&A) was requested by Dr. Alan Stoker of Los Alamos National Laboratory to perform laboratory analysis for properties of CDBM 2 and CDBM 3 samples, as outlined in Subcontract No. 9-XTI-027EE-1. The scope of work included conducting tests for the following properties: Initial moisture content, dry bulk density, and calculated porosity; Saturated hydraulic conductivity; Moisture characteristics; Unsaturated hydraulic properties (calculated); and Transient outflow.
Date: December 1, 1992
Partner: UNT Libraries Government Documents Department

The morphology of blends of linear and branched polyethylenes in solid state by SANS

Description: In a previous paper, the authors have shown how small-angle neutron and X-ray scattering (SANS, SAXS) can be used to determine the melt compatibility of different polyolefins, including high-density (HD), low-density (LD), and linear low density (LLD) polyethylene. Such blends have attained widespread commercial applications, though the understanding of the mechanical and melt-flow properties of such blends has hitherto been handicapped by the absence of a consensus concerning the degree of mixing of the components, both in the melt and solid states. Recent SANS data indicate that for HDPE/LDPE blends, the melt is homogeneous for all compositions after proper accounting for H/D isotope effects. In this publication the authors use complementary SANS, DSC, and SAXS to examine the types of morphologies and the different degrees of phase separation which may arise via crystallization effects on cooling from a homogeneous melt.
Date: March 1, 1995
Creator: Wignall, G.D.; Londono, J.D.; Alamo, R.G. & Mandelkern, L.
Partner: UNT Libraries Government Documents Department

Point Defects in Binary Laves-Phase Alloys

Description: Point defect mechanisms in the binary C15 NbCr{sub 2} and NbCo{sub 2}, and C14 NbFe{sub 2} systems on both sides of stoichiometry was studied and clarified by both bulk density and X-ray lattice parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000 C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. However, thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr{sub 2} laves phase alloys after quenching from 1400 C. These could be completely eliminated by annealing at 1000 C. Anti-site hardening was found on both sides of stoichiometry for all three Laves phase systems studied. Furthermore, the thermal vacancies in NbCr{sub 2} alloys after quenching from 1400 C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds, while the thermal vacancy softening is unique to the Laves phase. Both the anti-site defects and thermal vacancies do not significantly affect the fracture toughness of the Laves phases.
Date: November 30, 1998
Creator: Liaw, P.K.; Liu, C.T.; Pike, L.M. & Zhu, J.H.
Partner: UNT Libraries Government Documents Department

Effects of thermomechanical processing on the resulting mechanical properties of 6101 aluminum foam

Description: Porous materials represent a tremendous weight savings for light-weight structural applications. The fabrication path can play a critical role in the resulting properties. High porosity aluminum was fabricated in a number of ways. The starting material was a cast 6101 aluminum that had a relative density of 9.8%. The cast aluminum block was compressed by uniaxial, biaxial, and triaxial densification. Uniaxial compression was done at room temperature and 200 C. Biaxial compression was achieved by unidirectional rolling at room temperature and 200 C. Triaxial compression was done by cold isostatic pressing at 3.4, 6.7, and 34 MPa (0.5, 1.0, and 5.0 ksi). Metallography and mechanical test specimens were machines from the processed bars. The mechanical properties showed that the relative yield strength depended both on relative density and processing temperature.
Date: December 1, 1998
Creator: Margevicius, R.W.; Stanek, P.W. & Jacobson, L.A.
Partner: UNT Libraries Government Documents Department

Porosity development in the Copper Ridge Dolomite and Maynardville Limestone, Bear Creek Valley and Chestnut Ridge, Tennessee

Description: Matrix porosity data from deep core obtained in Bear Creek Valley indicate that porosities in the Maynardville Limestone are lithology and depth dependent. Matrix porosities are greater in the Cooper Ridge Dolomite than in the Maynardville Limestone, yet there is no apparent correlation with depth. Two interrelated diagenetic processes are the major controlling factors on porosity development in the Copper Ridge Dolomite and Maynardville Limestone; dissolution of evaporate minerals and dedolomitization. Both of these diagenetic processes produce matrix porosities between 2.1 and 1.3% in the Copper Ridge Dolomite and upper part of the Maynardville Limestone (Zone 6) to depths of approximately 600 ft bgs. Mean matrix porosities in Zones 5 through 2 of the Maynardville Limestone range from 0.8 to 0.5%. A large number of cavities have been intersected during drilling activities in nearly all zones of the Maynardville Limestone in Bear Creek Valley. Therefore, any maynardville Limestone zone within approximately 200 ft of the ground surface is likely to contain cavities that allow significant and rapid flow of groundwater. Zone 6 could be an important stratigraphic unit in the Maynardville Limestone for groundwater flow and contaminant transport because of the abundance of vuggy and moldic porosities. There are large variations in the thickness and lithology in the lower part of the Maynardville (Zones 2, 3, and 4 in the Burial Grounds region). The direction and velocity of strike-parallel groundwater flow may be altered in this area within the lower Maynardville Limestone.
Date: December 1, 1995
Creator: Goldstrand, P.M.; Menefee, L.S. & Dreier, R.B.
Partner: UNT Libraries Government Documents Department

Bonding of DATB progress report

Description: A series of DATB (diaximotrinitrobenzine) pressings were made in an effort to find the most suitable binder. The requirements for this binder were as follows: Thermal stability (Must be as stable as DATB or not show any reaction with DATB at 200 degrees C); Density (Must press to 95% theoretical or higher); Compressive Strength (Must be strong enough to machine, and stronger if possible); Moldability (Must be adaptable to isostatic pressing conditions). After investigating various materials such as epoxies, a high temperature silicon phenolic and Exon, it was found that, DATB could not be pressed at 110 degrees C and 20,000 psi to an acceptable density and strength. While a plastic binder is not needed for reasons of strength or desensitization, it may however be needed as a plasticizer to resist thermal shock. This can only be determined by the production of larger specimens at Site 300. Summarized data is presented.
Date: August 2, 1958
Creator: Archibald, P. B.
Partner: UNT Libraries Government Documents Department

Porous HMX initiation studies -- Sugar as an inert simulant

Description: For several years the authors have been using magnetic particle velocity gauges to study the shock loading of porous HMX (65 and 73% TMD) of different particle sizes to determine their compaction and initiation characteristics. Because it has been difficult to separate the effects of compaction and reaction, an inert simulant was needed with properties similar to HMX. Sugar was selected as the simulant for several reasons: (1) the particle size distribution of C and H granulated sugar is similar to the coarse HMX the authors have been using (120 {micro}m average size), (2) the particle size of C and H confectioners (powdered) sugar is similar to the fine HMX in the studies (10 {micro}m average size), (3) it is an organic material, and (4) sugar was readily available. Because the densities of HMX and sugar are somewhat different, the authors chose to do the experiments on sugar compacts at 65 and 73% TMD. As expected, no reaction was observed in the sugar experiments. Compaction wave profiles were similar to those measured earlier for the HMX, i.e., the compaction waves in the coarse sugar were quite disperse while those in the fine sugar were much sharper. This indicates that the compaction wave profiles are controlled by particle size and not reaction. Also, the coarse sugar gauge signals exhibited a great deal of noise, thought to the be result of fracto-emission.
Date: November 1, 1997
Creator: Sheffield, S.A.; Gustavsen, R.L. & Alcon, R.R.
Partner: UNT Libraries Government Documents Department

Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

Description: The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10{sup -6} to 9.8 x 10{sup -6} foot per day (2 x 10{sup -6} to 3 x 10{sup -6} meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10{sup -5} to 2.9 x 10{sup -2} foot per day (8 x 10{sup -6} to 9 x 10{sup -3} meter per day). 15 refs., 4 figs., 1 tab.
Date: December 31, 1985
Creator: Montazer, P. & Wilson, W.E.
Partner: UNT Libraries Government Documents Department

Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

Description: This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area.
Date: November 1, 1997
Creator: Rautman, C.A. & McKenna, S.A.
Partner: UNT Libraries Government Documents Department