12 Matching Results

Search Results

Advanced search parameters have been applied.

Sorption of americium in tuff and pure minerals using synthetic and natural groundwaters

Description: The distribution of Am between selected solid and liquid phases has been studied using initial {sup 241}Am solutions with a molarity smaller than 1 {times} 10{sup {minus}11}. The synthetic and natural groundwaters used have pH values in the 7--8 range and a total alkalinity of approximately 1 mN which is mainly due to bicarbonate. Mass spectrometric isotope dilution was utilized to determine the amount of Am in the solution phase initially and after equilibrium was attained. Using this sensitive technique, 7 {times} 10{sup 8} atoms of {sup 241}Am were accurately measured. Our results indicate that the percent of Am lost to the walls of the container in the absence of geologic material varies from 35 to 84. The Am sorption coefficient determined is on the order of 10{sup 3} ml/g for clinoptilolite, 10{sup 4} ml/g for tuff consisting mainly of alkali feldspar and cristobalite, and 10{sup 5} ml/g for romanechite. 12 refs.
Date: December 1, 1989
Creator: Triay, I.R.; Meijer, A.; Cisneros, M.R.; Miller, G.G.; Mitchell, A.J.; Ott, M.A. et al.
Partner: UNT Libraries Government Documents Department

Determination of trace elements on polysilicates by ID-ICP-MS with ultrasonic nebulization/membrane desolvation

Description: This work investigates the performance of an ID-ICP-MS (isotope dilution-inductively coupled plasma mass spectrometry) system with USN/MD (ultrasonic nebulization/membrane desolvation) sample introduction for the determination of trace metal impurities in polysilicon.
Date: June 1, 1996
Creator: Bonchin-Cleland, S.; Olivares, J.A.; Miller, G.G.; Gallegos, L. & Dawson, H.J.
Partner: UNT Libraries Government Documents Department

Evaluation of the anthropogenic radionuclide concentrations in sediments and fauna collected in the Beaufort Sea and northern Alaska

Description: This study was performed to establish a quality controlled data set about the levels of radio nuclide activity in the environment and in selected biota in the U.S. Arctic. Sediment and biota samples were collected by the National Oceanic and Atmospheric Administration (NOAA), the National Biological Service, and the North Slope Borough`s Department of Wildlife Management to determine the impact of anthropogenic radionuclides in the Arctic. The results summarized in this report are derived from samples collected in northwest Alaska with emphasis on species harvested for subsistence in Barrow, Alaska. Samples were analyzed for the anthropogenic radionuclides {sup 90}Sr, {sup 137}Cs, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu and {sup 241}Am. The naturally occurring radionuclides {sup 40}K, {sup 212}Pb and {sup 214}Pb were also measured. One goal of this study was to determine the amounts of anthropogenic radionuclides present in the Beaufort Sea. Sediment samples were isotopically fingerprinted to determine the sources of radio nuclide activities. Biota samples of subsistence and ecological value were analyzed to search for evidence of bio-accumulation of radionuclides and to determine the radiation exposures associated with subsistence living in northern Alaska. The anthropogenic radio nuclide content of sediments collected in the Beaufort Sea was predominantly the result of the deposition of global fallout. No other sources of anthropogenic radionuclides could be conclusively identified in the sediments. The anthropogenic radio nuclide concentrations in fish, birds and mammals were very low. Assuming that ingestion of food is an important pathway leading to human contact with radioactive contaminants and given the dietary patterns in coastal Arctic communities, it can be surmised that marine food chains are presently not significantly affected.
Date: July 1, 1997
Creator: Efurd, D.W.; Miller, G.G. & Rokop, D.J.
Partner: UNT Libraries Government Documents Department

Search for superradiant emission states in nuclear isomer crystals

Description: This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective was to verify the stimulated emission of gamma rays from {sup 125m}Te, as claimed by Russian scientists. The reported cross section for stimulated emission was sufficiently large to allow gain in a single-pass gamma-ray laser. The stimulated emission of gamma rays from a nuclear isomer is expected to result in collinear photons and, therefore, should be observable as a sum peak in the gamma-ray spectrum. Skorobogatov and Dzevitskii reported an increase of an order of magnitude in the sum peak (218.56 keV) when a sample of beryllium telluride containing {sup 125m}Te was cooled from room temperature to near-liquid-helium temperatures. The authors have repeated their experiment and have observed no increase in the sum peak above accidental summing. The upper limit for the stimulated-emission cross section based on the three-standard-deviation statistical error is 6.8 x 10 {sup {minus}21} cm{sup 2}. This result is one order of magnitude lower than the cross section reported by Skorobogatov and Dzevitskii. The cross section would not allow gain in a single-pass gamma-ray laser. Their results support the position of Baldwin and Solem rather than that of Kamenov.
Date: January 1, 1998
Creator: Rundberg, R.S.; Wilhelmy, J.B.; Taylor, R.D.; Solem, J.C.; Fowler, M.M.; Miller, G.G. et al.
Partner: UNT Libraries Government Documents Department

Solar Neutrino Physics

Description: With its heavy water target, the Sudbury Neutrino Observatory (SNO) offers the unique opportunity to measure both the 8B flux of electron neutrinos from the Sun and, independently, the flux of all active neutrino species reaching the Earth. A model-independent test of the hypothesis that neutrino oscillations are responsible for the observed solar neutrino deficit can be made by comparing the charged-current (CC) and neutral-current (NC) rates. This LDRD proposal supported the research and development necessary for an assessment of backgrounds and performance of the SNO detector and the ability to extract the NC/CC-Ratio. Particular emphasis is put upon the criteria for deployment and signal extraction from a discrete NC detector array based upon ultra-low background 3He proportional counters.
Date: July 15, 1999
Creator: Bowles, T.J.; Brice, S.J.; Esch, E.-I.; Fowler, M.M.; Goldschmidt, A.; Hime, A. et al.
Partner: UNT Libraries Government Documents Department

Neutrino observations from the Sudbury Neutrino Observatory

Description: The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.
Date: September 24, 2001
Creator: Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W. et al.
Partner: UNT Libraries Government Documents Department

An array of low-background 3He proportional counters for theSudbury Neutrino Observatory

Description: An array of Neutral-Current Detectors (NCDs) has been builtin order to make a unique measurement of the total active ux of solarneutrinos in the Sudbury Neutrino Observatory (SNO). Data in the thirdphase of the SNO experiment were collected between November 2004 andNovember 2006, after the NCD array was added to improve theneutral-current sensitivity of the SNO detector. This array consisted of36 strings of proportional counters lled with a mixture of 3He and CF4gas capable of detecting the neutrons liberated by the neutrino-deuteronneutral current reaction in the D2O, and four strings lled with a mixtureof 4He and CF4 gas for background measurements. The proportional counterdiameter is 5 cm. The total deployed array length was 398 m. The SNO NCDarray is the lowest-radioactivity large array of proportional countersever produced. This article describes the design, construction,deployment, and characterization of the NCD array, discusses theelectronics and data acquisition system, and considers event signaturesand backgrounds.
Date: February 1, 2007
Creator: Amsbaugh, J.F.; Anaya, J.M.; Banar, J.; Bowles, T.J.; Browne,M.C.; Bullard, T.V. et al.
Partner: UNT Libraries Government Documents Department

DANCE : Device for Measurement of (n.g.) Reactions on radioactive Species /

Description: DANCE (Device for Advanced Neutron Capture Experiments) is a 4{pi} 162 element BaF{sub 2} array under development at Los Alamos National Laboratory. It is designed to provide high granularity, fast timing and high photon detection efficiency. It will be located at the Los Alamos Neutron Scattering Center where neutrons are produced using 800 MeV proton induced spallation reactions on heavy element production targets. Using the pulsed high neutron fluence available at this facility combined with time of flight techniques it will be possible to make neutron capture measurements in the neutron energy range from eV to 100's of keV on rare and radioactive target material at the milligram and below level. These measurements will provide critically needed data for the interpretation of the astrophysical s-process 'branching point' nuclei as well as information for reactions needed in understanding transmutation processes of radioactive species.
Date: January 1, 2001
Creator: Chamberlin, E. P. (Edwin P.); Dragowsky, M. (Michael); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Palmer, P. D. (Phillip D.); Pangualt, L. N. (Laurence N.) et al.
Partner: UNT Libraries Government Documents Department

DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

Description: Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.
Date: January 1, 2002
Creator: Ullmann, J. L. (John L.); Haight, Robert C.; Hunt, L. F. (Lloyd F.); Reifarth, R. (Rene); Rundberg, R. S. (Robert S.); Bredeweg, T. A. (Todd A) et al.
Partner: UNT Libraries Government Documents Department

Preparation of radioactive rare earth targets for neutron capture study

Description: The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.
Date: January 1, 2002
Creator: Miller, G. G. (Geoffrey G.); Rogers, P. S. Z. (Pamela S. Z.); Palmer, P. D. (Phillip D.); Dry, D. E. (Donald E.); Rundberg, R. S. (Robert S.); Fowler, Malcolm M. et al.
Partner: UNT Libraries Government Documents Department

Search for X-ray induced decay of the 31-yr isomer of 178Hf using synchrotron radiation

Description: Isomeric {sup 178}Hf (t{sub 1/2} = 31 yr, E{sub x} = 2.446 MeV, J{sup {pi}} = 16{sup +}) was bombarded by a white beam of x-rays from the Advanced Photon Source at Argonne National Laboratory. A search was made for x-ray induced decay of the isomer by detecting prompt and delayed {gamma} rays associated with the decay. No induced decay was observed. Upper limits for such a process for x-ray energies between 7-100 keV were set. The limits between 7 and 30 keV are below {approx} 3 x 10{sup -27} cm{sup 2}-keV for induced decay that bypasses the 4-s isomer and {approx} 5 x 10{sup -27} cm{sup 2}-keV for induced decay that is delayed through this isomer, orders of magnitude below values at which induced decay was reported previously. These limits are consistent with what is known about the properties of atomic nuclei.
Date: September 13, 2004
Creator: Ahmad, I; Banar, J C; Becker, J A; Bredeweg, T A; Cooper, J R; Gemmell, D S et al.
Partner: UNT Libraries Government Documents Department

Search for X-Ray Induced Acceleration of the Decay of the 31-yr Isomer 178Hf Using Synchrotron Radiation

Description: Releasing the energy stored in an isomeric nuclear state in a controlled way with an atomic or electromagnetic trigger is an attractive speculation: the energy gain may be on the order of the ratio of nuclear/atomic energies - MeV/keV. (Nuclear isomers are loosely defined as excited nuclear states with lifetimes longer than 10{sup -9} s.) Nuclear isomers, therefore, represent an opportunity for a stand-alone energy source if suitable schemes for trigger and control of the energy release can be found. Potential applications include space drive, as well as very bright {gamma}-ray sources. The nucleus {sup 178}Hf has a nuclear isomer with excitation energy E{sub x} = 2.447 MeV. The 2.447-MeV isomeric state decays slowly (t{sub 1/2} = 31 y) to the nearby state at 2.433 MeV. The J{sup {pi}} = 13{sup -} state loses energy in a rapid (t {approx} 10{sup -12} s) {gamma}-ray cascade ending at the 8{sup -} rotational band head which in turn decays via the ground-state rotational band cascade. The {gamma}-ray cascade is delayed at the 8{sup -} state at 1.147 MeV, since the 8{sup -} state is also isomeric, with t{sub 1/2} = 4 s. Very scarce quantities of the 16{sup +}, 31-yr isomer are available for research ({approx} 10{sup 15} atoms). Reports of triggered decay of the {sup 178}Hf isomer induced by x-rays delivered by a dental x-ray machine have been made [2,3]. Enhancements of {approx} 1 - 2% in the isomer decay rate (dN/dt = - (1 + {var_epsilon})N/{tau}) had been reported for various {gamma}-rays in the cascade (distinguished by red and vertical lines in Figure 1). The reported integrated cross section for triggering the decay is cm{sup 2} keV, so large as to demand new physics. We have sought to verify these reports taking advantage of the intense photon flux available at ...
Date: May 9, 2002
Creator: Ahmad, I; Banar, J C; Becker, J A; Gemmell, D S; Kraemer, A; Mashayekhi, A et al.
Partner: UNT Libraries Government Documents Department