2 Matching Results

Search Results

Advanced search parameters have been applied.

A Concept for Zero-Alignment Micro Optical Systems

Description: We are developing a method of constructing compact, three-dimensional photonics systems consisting of optical elements, e.g., lenses and mirrors, photo-detectors, and light sources, e.g., VCSELS or circular-grating lasers. These optical components, both active and passive, are mounted on a lithographically prepared silicon substrate. We refer to the substrate as a micro-optical table (MOT) in analogy with the macroscopic version routinely used in optics laboratories. The MOT is a zero-alignment, microscopic optical-system concept. The position of each optical element relative to other optical elements on the MOT is determined in the layout of the MOT photomask. Each optical element fits into a slot etched in the silicon MOT. The slots are etched using a high-aspect-ratio silicon etching (HARSE) process. Additional positioning features in each slot's cross-section and complementary features on each optical element permit accurate placement of that element's aperture relative to the MOT substrate. In this paper we present the results of the first fabrication and micro-assembly experiments of a silicon-wafer based MOT. Based on these experiments, estimates of position accuracy are reported. We also report on progress in fabrication of lens elements in a hybrid sol-gel material (HSGM). Diffractive optical elements have been patterned in a 13-micron thick HSGM layer on a 150-micron thick soda-lime glass substrate. The measured ms surface roughness was 20 nm. Finally, we describe modeling of MOT systems using non-sequential ray tracing (NSRT).
Date: September 16, 1999
Partner: UNT Libraries Government Documents Department

Microwave Imaging Reflectometry for the Visualization of Turbulence in Tokamaks

Description: Understanding the mechanism of anomalous transport in magnetically confined plasmas requires the use of sophisticated diagnostic tools for the measurement of short-scale turbulent fluctuations. This paper describes the conceptual design of an experimental technique for the global visualization of density fluctuations in tokamaks. The proposed method is based on microwave reflectometry and consists in using a large diameter probing beam, collecting the reflected waves with a large aperture antenna, and forming an image of the reflecting plasma layer onto a 2D array of microwave receivers. Based on results from a series of numerical simulations, the theoretical feasibility conditions of the proposed method are discussed.
Date: December 16, 1999
Creator: Mazzucato, E.
Partner: UNT Libraries Government Documents Department