4 Matching Results

Search Results

Advanced search parameters have been applied.

A weatherization manual for LIHEAP policy makers and program administrators

Description: This manual is designed to provide Low-Income Home Energy Assistance Program (LIHEAP) directors with information about weatherization and innovative ways they can utilize LIHEAP funds for weatherization activities. It contains a description of innovative weatherization programs which demonstrate creative uses of LIHEAP funds in weatherization activities. In many of the innovative examples, state and local administrators are coordinating their LIHEAP funds with the US Department of Energy (DOE) Low-Income Weatherization Assistance Program`s funding and with a variety of other federal, state and utility company resources. The innovative programs demonstrate how LIHEAP funds can be used in client education, targeting high energy users, staff training, assessment and audits for weatherization services. The reader will find in the appendices lists of contact persons and further descriptions of the programs highlighted. Although designed with LIHEAP directors in mind, the practices and programs highlighted in this manual are of practical use to any state, local or utility weatherization program administrator. The glossary at the end of the descriptive chapters will assist readers with the terminology used throughout the manual. This manual and the many resource entities cited in its appendices provide ready access to a wealth of state-of-the-art information which could lead to a more cost-effective expenditure of LIBEAP weatherization dollars.
Date: September 1, 1993
Creator: Witherspoon, M. J.; Marabate, R.; Weinhaus, M. & Eisenberg, J. F.
Partner: UNT Libraries Government Documents Department

Fresh Kills leachate treatment and minimization study. Volume 1, Characteristics and treatment alternatives: Final report

Description: The New York City Department of Sanitation is developing a comprehensive landfill leachate management plan for the Fresh Kills Landfill. The leachate was first analyzed for conventional and priority pollutants. The leachate was well buffered at pH 7 to 8 with an alkalinity of 5,000 to 6,000 mg/L. The BOD was low, usually less than 100 mg/L, but the COD was as high as 1,800 mg/L. Ammonia concentrations were around 700 mg/L and the color resembled strong tea at 3,000 colorimetric units. Only few of the priority pollutants were present, and at extremely low concentrations. Based on the chemical characteristics of the leachate, the primary environmental impact would be on the oxygen balance of the receiving surface waters.
Date: September 1, 1993
Creator: Fillos, J. & Khanbilvardi, R.
Partner: UNT Libraries Government Documents Department

Fresh Kills leachate treatment and minimization study: Volume 2, Modeling, monitoring and evaluation. Final report

Description: The New York City Department of Sanitation is developing a comprehensive landfill leachate management plan for the Fresh Kills landfill, located on the western shore of Staten Island, New York. The 3000-acre facility, owned and operated by the City of New York, has been developed into four distinct mounds that correspond to areas designated as Sections 1/9, 2/8, 3/4 and 6/7. In developing a comprehensive leachate management plan, the estimating leachate flow rates is important in designing appropriate treatment alternatives to reduce the offsite migration that pollutes both surface water and groundwater resources.Estimating the leachate flow rates from Sections 1/9 and 6/7 was given priority using an available model, hydrologic evaluation of landfill performance (HELP), and a new model, flow investigation for landfill leachate (FILL). The field-scale analysis for leachate flow included data collection of the leachate mound-level from piezometers and monitoring wells installed on-site, for six months period. From the leachate mound-head contours and flow-gradients, Leachate flow rates were computed using Darcy`s Law.
Date: September 1, 1993
Creator: Fillos, J. & Khanbilvardi, R.
Partner: UNT Libraries Government Documents Department

Fort Drum integrated resource assessment. Volume 1, Executive summary

Description: Some of the most difficult problems that a federal site has in reducing its energy consumption in a cost-effective manner revolve around understanding where the energy is being used, and what technologies could be employed to decrease the energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, he or she may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This can lead to selection of suboptimal projects that prevent the site from achieving the full life-cycle cost savings. The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets.
Date: September 1, 1993
Creator: Dixon, D. R.; Armstrong, P. R. & Daellenbach, K. K.
Partner: UNT Libraries Government Documents Department