113 Matching Results

Search Results

Advanced search parameters have been applied.

Liquefied Gas for the Household.

Description: Describes the benefits of using liquefied gas as a means of power in the home, how it is measured and distributed, and its comparative costs.
Date: December 1939
Creator: Senner, Arthur H. (Arthur Henry) & Holbrook, Helen S. (Helen Shepard), b. 1882
Partner: UNT Libraries Government Documents Department

Saline Water Conversion by Direct Freezing With Butane

Description: Report presenting a study of a plant to produce 10,000,000 gallons per day of fresh water from sea water. The process used is direct freezing brought about by the evaporation of a hydrocarbon refrigerant in contact with sea water, washing the ice free of saline liquor, and melting the ice to potable water by the condensation of butane vapor.
Date: 1960
Creator: Karnofsky, George & Steinhoff, Paul F.
Partner: UNT Libraries Government Documents Department

The Mercury-Sensitized Photo-Reactions of 2,3-Dimethyl Butane

Description: The work encompassed by this thesis is partially a reproduction of the results obtained by John A. Marcia in his work on the photo-chemical reactions of branched hydrocarbons. The previous work done on this particular problem was rendered partially valueless because of the loss of the liquid hydrocarbon product when a fractionation column at the Texas Company Laboratory, Beacon, New York, broke during the fractionation run.
Date: 1947
Creator: Sutton, Cecil C.
Partner: UNT Libraries

Carburetion of Combustible Gas with Butane and Propane-Butane Mixtures with Particular Reference to the Carburetion of Water Gas

Description: Report issued by the Bureau of Mines over the carburetion of many different fuels. The report pays particular attention to the carburetion of water gas. Carburetion methods and results are presented and discussed. This report includes tables, and illustrations.
Date: 1929
Creator: Odell, William Wallace
Partner: UNT Libraries Government Documents Department

[News Script: Four Injured]

Description: Script from the WBAP-TV/NBC station in Fort Worth, Texas, covering a news story about a butane gas explosion that injured four people in Dallas, Texas.
Date: August 6, 1956
Creator: WBAP-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

[News Clip: Four Injured]

Description: Video footage from the WBAP-TV station in Fort Worth, Texas, to accompany a news story about a gas explosion that wounded four people in Dallas. The video shows two wounded men in the emergency room, their families, and the damage that was caused to their property.
Date: August 6, 1956
Creator: WBAP-TV (Television station : Fort Worth, Tex.)
Partner: UNT Libraries Special Collections

Vapor space characterization of waste Tank 241-U-103: Results from samples collected on 2/15/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-103 (referred to as Tank U-103). The results described her were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water vapor (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 11 were observed above the 5-ppbv reporting cutoff. Eleven tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 90% of the total organic components in Tank U-103. Two permanent gases, hydrogen (H{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank U-103 is on the Hydrogen Watch List.
Date: November 1, 1995
Creator: Ligotke, M.W.; Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Klinger, G.S.; Olsen, K.B. et al.
Partner: UNT Libraries Government Documents Department

Chemical kinetic modelling of hydrocarbon ignition

Description: Chemical kinetic modeling of hydrocarbon ignition is discussed with reference to a range of experimental configurations, including shock tubes, detonations, pulse combustors, static reactors, stirred reactors and internal combustion engines. Important conditions of temperature, pressure or other factors are examined to determine the main chemical reaction sequences responsible for chain branching and ignition, and kinetic factors which can alter the rate of ignition are identified. Hydrocarbon ignition usually involves complex interactions between physical and chemical factors, and it therefore is a suitable and often productive subject for computer simulations. In most of the studies to be discussed below, the focus of the attention is placed on the chemical features of the system. The other physical parts of each application are generally included in the form of initial or boundary conditions to the chemical kinetic parts of the problem, as appropriate for each type of application being addressed.
Date: August 25, 1995
Creator: Westbrook, C.K.; Pitz, W.J.; Curran, H.J.; Gaffuri, P. & Marinov, N.M.
Partner: UNT Libraries Government Documents Department

Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

Description: Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.
Date: January 31, 1995
Creator: Ekerdt, J.G.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of Waste Tank 241-S-111: Results from samples collected on 3/21/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-S-111 (referred to as Tank S-111). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, seven were observed above the 5-ppbv reporting cutoff. Five tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 98% of the total organic components in Tank S-111. Two permanent gases, hydrogen (H{sub 2}) and nitrous oxide (N{sub 2}O), were also detected. Tank S-111 is on the Hydrogen Watch List.
Date: October 1, 1995
Creator: Klinger, G.S.; Clauss, T.W. & Ligotke, M.W.
Partner: UNT Libraries Government Documents Department

Pentan isomers compound flame front structure

Description: The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.
Date: August 13, 1995
Creator: Mansurov, Z. A.; Mironenko, A. W.; Bodikov, D. U. & Rachmetkaliev, K. N.
Partner: UNT Libraries Government Documents Department

Vapor space characterization of Waste Tank 241-U-107: Results from samples collected on 2/17/95

Description: This report describes inorganic and organic analyses results from samples obtained from the headspace of the Hanford waste storage Tank 241-U-107 (referred to as Tank U-107). The results described here were obtained to support safety and toxicological evaluations. A summary of the results for inorganic and organic analytes is listed in Table 1. Detailed descriptions of the results appear in the text. Quantitative results were obtained for the inorganic compounds ammonia (NH{sub 3}), nitrogen dioxide (NO{sub 2}), nitric oxide (NO), and water (H{sub 2}O). Sampling for hydrogen cyanide (HCN) and sulfur oxides (SO{sub x}) was not requested. In addition, quantitative results were obtained for the 39 TO-14 compounds plus an additional 14 analytes. Of these, 10 were observed above the 5-ppbv reporting cutoff. Sixteen organic tentatively identified compounds (TICs) were observed above the reporting cutoff of (ca.) 10 ppbv, and are reported with concentrations that are semiquantitative estimates based on internal-standard response factors. The 10 organic analytes with the highest estimated concentrations are listed in Table 1 and account for approximately 88% of the total organic components in Tank U-107. Nitrous oxide (N{sub 2}O) was the only permanent gas detected in the tank-headspace samples. Tank U-107 is on the Organic and the Hydrogen Watch Lists.
Date: October 1, 1995
Creator: McVeety, B.D.; Clauss, T.W. & Ligotke, M.W.
Partner: UNT Libraries Government Documents Department

Supercritical catalysts of light hydrocarbon conversion. DOE PETC eighth quartery report, July 1, 1995--September 30, 1995

Description: The solid superacid catalysts investigated in this project catalyze hydrocarbon conversions by routes involving carbocation intermediates. This report is a summary of mechanisms of hydrocarbon conversion catalyzed by these and related solid acids. This mechanistic information summarized here is important to the present project because it provides guidance for the modeling of the kinetics of the catalytic butane conversion and propane conversion. Because of the difficulty of determining surface reaction intermediates, understanding of surface reaction mechanisms lags far behind that of solution reaction mechanisms, and what is known about the former is fragmentary and often largely based on presumed analogies with the latter, combined with results such as those from tracer experiments, kinetics experiments, and theoretical chemistry.
Date: June 1, 1996
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

Superacid catalysis of light hydrocarbon conversion. DOE PETC seventh quarterly progress report, April 1, 1995--July 31, 1995

Description: Iron- and manganese-promoted sulfated zirconia is a catalyst for the conversion of propane, but the rate of conversion of propane is much less than the rate of conversion of butane. Whereas this catalyst appears to be a good candidate for practical, industrial conversion of butane, it appears to lack sufficient activity for practical conversion of propane. The propane conversion data reported here provide excellent insights into the chemistry of the catalytic conversion. Solid and catalysts, namely, sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite, were tested for conversion of propane at 1 atm, 200-450{degrees}C, and propane partial pressures in the range of 0.01-0.05 atm. Both promoted and unpromoted sulfated zirconia were found to be active for conversion of propane into butanes, pentanes, methane, ethane, ethylene, and propylene in the temperature range of 200-350{degrees}C, but catalyst deactivation was rapid. At the higher temperatures, only cracking and dehydrogenation products were observed. In contrast to the zirconia-supported catalysts, USY zeolite was observed to convert propane (into propylene, methane, and ethylene) only at temperatures {ge}400{degrees}C. The initial (5 min on stream) rates of propane conversion in the presence of iron- and manganese-promoted sulfated zirconia, sulfated zirconia, and USY zeolite at 450{degrees}C and 0.01 atm propane partial pressure were 3.3 x 10{sup -8}, 0.3 x 10{sup -8}, and 0.06 x 10{sup -8} mol/(s{center_dot}g), respectively. The product distributions in the temperature range 200-450{degrees}C are those of acid-base catalysis, being similar to what has been observed in superacid solution chemistry at temperatures <0{degrees}C. If propane conversion at 450{degrees}C can be considered as a probe of acid strength of the catalyst, the activity comparison suggests that the promoted sulfated zirconia is a stronger acid than sulfated zirconia, which is a stronger acid than USY zeolite.
Date: February 1, 1996
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

Superacid catalysis of light hydrocarbon conversion. Ninth quarterly report, October 1, 1995--December 31, 1995

Description: Transition metal promoters of sulfated zirconia increase its catalytic activity for the conversion of n-butane. The promoter effects vary from one transition metal to another in the family zinc, iron, nickel, cobalt, and manganese. The most active catalyst so far tested is promoted by both iron and manganese. This catalyst is two or more orders of magnitude more active than unpromoted sulfated zirconia. The manganese promoter alone markedly increases the catalytic activity, but the activity declines very rapidly with time on stream in the flow reactor. Under the same experimental conditions, iron has a smaller but longer-lasting effect as a promoter than manganese, and to a first approximation, the iron- and manganese-promoted catalyst shows a behavior that is a superposition of those of the two individual promoters.
Date: December 31, 1995
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

In situ laser raman spectroscopy during sequential oxidizing and reducing conditions for a vanadium-phosphorous-oxide catalyst

Description: A VPO catalyst prepared in an organic medium has been studied by in situ laser Raman spectroscopy under reaction conditions for n-butane oxidation to maleic anhydride. Data were obtainable at low laser power and short collection times. Raman characterization during continuous flow (steady state) revealed that the (VO){sub 2}P{sub 2}O{sub 7} phase was present. Sequential oxidizing (10% O{sub 2} in N{sub 2}) and reducing (2% n-butane in N{sub 2}) conditions were explored at 350{degree} and 400{degree}C. Cycling (unsteady state) revealed enhancement of {alpha}{sub II}-VOPO{sub 4}, {beta}-VOPO{sub 4}, {gamma}-VOPO{sub 4}, and {delta}-VOPO{sub 4} during oxidizing conditions; intensity of Raman bands due to (VO){sub 2}P{sub 2}O{sub 7} increased during reducing conditions.
Date: December 31, 1995
Creator: Soejarto, A.D.; Schrader, G.L. & Coulston, G.W.
Partner: UNT Libraries Government Documents Department

Superacid catalysis of light hydrocarbon conversion. Tenth quarterly report, January 1, 1996--March 31, 1996

Description: Transition metal promoters markedly increase the activity of sulfated zirconia for isomerization of butane. Data presented here demonstrate the effects of the promoters zinc, iron, and manganese; none of these is as effective as the iron/manganese combination. The effects of feed impurities (olefins and/or isobutane in n-butane) are consistent with those described in the preceding quarterly report: they lead to an improvement in catalytic activity. These observations are inferred to be of practical importance; they indicate the benefit of the impurities in increasing butane conversion. The product distribution data show that reactions accompanying isomerization and disproportionation are more important with some promoters (e.g., iron) than others (e.g., zinc). The data demonstrate that the iron- and manganese-promoted catalyst can be regenerated at least sever times with negligible loss of activity (within the experimental error). To apply this catalyst or a related catalyst industrially, it seems very likely to be necessary to reduce the rate of deactivation substantially and/or to regenerate the catalyst through many cycles.
Date: September 1, 1996
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

Superacid catalysis of light hydrocarbon conversion. Eleventh quarterly report, April 1, 1996--June 30, 1996

Description: The new catalyst Fe- and Mn-promoted sulfated zirconia is remarkably active for the low-temperature (even room temperature) isomerization of n-butane to give isobutane in the near absence of side products. Thus this catalyst offers excellent potential for practical application in this process. The catalyst is so active that it even converts smaller alkanes, including propane and ethane. The ethane conversion is orders of magnitude slower than the butane conversion, and the prospects for practical application with ethane are apparently negligible. However, the results for ethane conversion provide strong evidence that the alkane conversions proceed (at least under some conditions) by protonation of the alkane with the catalyst; thus the catalyst is comparable to superacids, and the chemistry is analogous to that occurring in superacid solutions. This insight will be useful in further improvement of the catalyst and the potential process for butane isomerization. The catalyst is active for alkane cracking at temperatures of typically 200-300{degrees}C, and evidence, summarized here, indicates that numerous reactions of alkanes begin as the catalyst protonates the alkane reactant. The kinetics data for this family of reactions fall on a linear compensation effect plot; such data for reactions that do not proceed via such a mechanism do not fall near the line representing the compensation effect. Thus the analysis of the kinetics data provides a good diagnostic tool for understanding the fundamental chemistry of the acid-catalyzed hydrocarbon conversions.
Date: December 31, 1996
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

In situ vibrational spectroscopic investigation of C{sub 4} hydrocarbon selective oxidation over vanadium-phosphorus-oxide catalysts

Description: n-Butane selective oxidation over the VPO catalyst to maleic anhydride is the first and only commercialized process of light alkane selective oxidation. The mechanism of this reaction is still not well known despite over twenty years of extensive studies, which can partially be attributed to the extreme difficulties to characterize catalytic reactions real-time under typical reaction conditions. In situ spectroscopic characterization techniques such as Infrared spectroscopy and laser Raman spectroscopy were used in the current mechanistic investigations of n-butane oxidation over VPO catalysts. To identify the reaction intermediates, oxidation of n-butane, 1,3-butadiene and related oxygenates on the VPO catalyst were monitored using FTIR spectroscopy under transient conditions. n-Butane was found to adsorb on the VPO catalyst to form olefinic species, which were further oxidized to unsaturated, noncyclic carbonyl species. The open chain dicarbonyl species then experienced cycloaddition to form maleic anhydride. VPO catalyst phase transformations were investigated using in situ laser Raman spectroscopy. This report contains Chapter 1: General introduction; Chapter 2: Literature review; and Chapter 5: Conclusion and recommendations.
Date: May 10, 1999
Creator: Xue, Z.Y.
Partner: UNT Libraries Government Documents Department

Superacid catalysis of light hydrocarbon conversion. Final report, August 26, 1993--August 26, 1996

Description: Motivated by the goal of finding improved catalysts for low- temperature conversion of light alkanes into fuel components or precursors of fuel components, the researchers have investigated sulfated zirconia and promoted sulfated zirconia for conversion of butane, propane, and ethane. Catalyst performance data for sulfated zirconia promoted with iron and manganese show that it is the most active noncorrosive, nonhalide catalyst known for n-butane isomerization, and it is an excellent candidate catalyst for new low- temperature n-butane isomerization processes to make isobutane, which can be converted by established technology into methyl t-butyl ether (MTBE). Various transition metals have been found to work as promoters of sulfated zirconia for n-butane isomerization. The combination of iron and manganese is the best known combination of promoters yet discovered. The iron- and manganese-promoted sulfated zirconia is also a catalyst for conversion of propane and of ethane. Ethane is converted into ethylene and butanes in the presence of the iron- and manganese-promoted sulfated zirconia; propane is also converted into butane, among other products. However, the activities of the catalyst for these reactions are orders of magnitude less than the activity for n-butane conversion, and there is no evidence that the catalyst would be of practical value for conversion of alkanes lighter than butane. The product distribution data for ethane and propane conversion provide new insights into the nature of the catalyst and its acidity. These data suggest the involvement of Olah superacid chemistry, whereby the catalyst protonates the alkane itself, giving carbonium ions (as transition states). The mechanism of protonation of the alkane may also pertain to the conversion of butane, but there is good evidence that the butane conversion also proceeds via alkene intermediates by conventional mechanisms of carbenium ion formation and rearrangement.
Date: December 31, 1996
Creator: Gates, B.C.
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning for premium fuel applications: Subtask 3.3 - dewatering studies

Description: If successful, the novel Hydrophobic Dewatering (HD) process being developed in this project will be capable of efficiently removing moisture from fine coal without the expense and other related drawbacks associated with mechanical dewatering or thermal drying. In the HD process, a hydrophobic substance is added to a coal-water slurry to displace water from the surface of coal, while the spent hydrophobic substance is recovered for recycling. For this process to have commercialization potential, the amount of butane lost during the process must be small. Earlier testing revealed the ability of the hydrophobic dewatering process to reduce the moisture content of fine coal to a very low amount as well as the determination of potential butane losses by the adsorption of butane onto the coal surface. Work performed in this quarter showed that the state of oxidation affects the amount of butane adsorbed onto the surface of the coal and also affects the final moisture content. the remaining work will involve a preliminary flowsheet of a continuous bench-scale unit and a review of the economics of the system. 1 tab.
Date: October 1, 1996
Creator: Yoon, R.H., Phillips, D.I., Sohn, S.M., Luttrell, G.H.
Partner: UNT Libraries Government Documents Department

Hydrophobic Dewatering of Fine Coal. Topical report, March 1, 1995-March 31, 1997

Description: Many advanced fine coal cleaning technologies have been developed in recent years under the auspices of the U.S. Department of Energy. However, they are not as widely deployed in industry as originally anticipated. An important reason for this problem is that the cleaned coal product is difficult to dewater because of the large surface area associated with fine particles. Typically, mechanical dewatering, such as vacuum filtration and centrifugation, can reduce the moisture to 20-35% level, while thermal drying is costly. To address this important industrial problem, Virginia Tech has developed a novel dewatering process, in which water is displaced from the surface of fine particulate materials by liquid butane. Since the process is driven by the hydrophobic interaction between coal and liquid butane, it was referred to as hydrophobic dewatering (HD). A fine coal sample with 21.4 pm median size was subjected to a series of bench-scale HD tests. It was a mid-vol bituminous coal obtained from the Microcel flotation columns operating at the Middle Fork coal preparation plant, Virginia. All of the test results showed that the HD process can reduce the moisture to substantially less than 10%. The process is sensitive to the amount of liquid butane used in the process relative to the solids concentration in the feed stream. Neither the intensity nor the time of agitation is critical for the process. Also, the process does not require long time for phase separation. Under optimal operating conditions, the moisture of the fine coal can be reduced to 1% by weight of coal.
Date: December 31, 1997
Creator: Yoon, R.; Sohn, S.; Luttrell, J. & Phillips, D.
Partner: UNT Libraries Government Documents Department

Determination of alternative fuels combustion products: Phase 2 final report

Description: This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.
Date: June 1, 1997
Creator: Whitney, K.A.
Partner: UNT Libraries Government Documents Department