26 Matching Results

Search Results

Advanced search parameters have been applied.

Status report on the long-term stability of the Advanced Photon Source.

Description: Table 1 summarizes the average elevation changes and standard deviations as well as the points with the largest changes for each year. On average, hardly any settlements can be detected; however, local changes of +2.90 mm to {minus}2.31 mm have been measured. Looking at the low and high points, the settlement process is slowing down over time. Overall, the settlements observed match the expectations for this type of construction. To date no major realignment of the Advanced Photon Source (APS) storage ring has been necessary. The particle beam tracks with the settlements of the floor as long as these changes occur in a smooth fashion and not as sudden discontinuities [5]. From Figures 6 through 8 it is also apparent that settlements affect larger areas in the storage ring and experiment hall that impact the location of the source point as well as the location of the beamline user equipment. The limiting apertures of the insertion device chambers will make realignment of the APS storage ring a necessity at some point in the future. Currently simulations and machine studies we underway to provide an estimate of tolerable settlement limits before a realignment of certain sections of the storage ring would be required. In conclusion, the APS has been constructed on solid ground with an excellent foundation. Only small settlement changes are being observed; so far they are not impacting the operation of the accelerator. We are continuing to monitor deformations of the APS floor in anticipation of a future realignment of the accelerator components.
Date: September 21, 1998
Creator: Friedsam, H.
Partner: UNT Libraries Government Documents Department

Interaction region vacuum system design at the PEP-II B factory

Description: The Interaction Region Vacuum System in the PEP-II B-Factory at SLAC must produce average pressures in the 10{sup -10} Torr range. low beamline pressures will minimize the background radiation encountered by the BaBar Detector A combination of copper and stainless steel vacuum chambers with continuous antechambers are used to make up the beam tubes. Linear Non-Evaporable Getter (NEG) pumps are used to produce distributed pumping along the length of these beam tubes. High conductance microwave type screens provide RF shields between the beam aperture and the NEG pumps. In this paper the design features of the beam tubes, NEG pumps, and RF pump screens are described and the vacuum and impedance analyses conducted in support of the design are discussed.
Date: July 21, 1997
Creator: Bertolini, L., LLNL
Partner: UNT Libraries Government Documents Department

LABORATORY EXPERIMENTS ON HEAT-DRIVEN TWO-PHASE FLOWS IN NATURAL AND ARTIFICIAL ROCK FRACTURES

Description: Water flow in partially saturated fractures under thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. At the potential high-level nuclear waste repository at Yucca Mountain, water flowing in fast pathways may ultimately contact waste packages and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize heat-driven liquid flow in fracture models that included (1) assemblies of roughened glass plates, (2) epoxy replicas of rock fractures, and (3) a fractured specimen of Topopah Spring tuff. Continuous rivulet flow was observed for high liquid flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for lower flow rates and wide apertures. Heat pipe conditions (vapor-liquid counterflow with phase change) were identified in five of the seven experiments in which spatially resolved thermal monitoring was performed, but not when liquid-vapor counterflow was hindered by very narrow apertures, and when inadequate working fluid volume was used.
Date: May 21, 1998
Creator: PRUESS, TIMOTHY J. KNEAFSEY AND KARSTEN
Partner: UNT Libraries Government Documents Department

Description of Fracture Systems for External Criticality Reports

Description: The purpose of this Analysis/Model Report (AMR) is to describe probabilistically the main features of the geometry of the fracture system in the vicinity of the repository. They will be used to determine the quantity of fissile material that could accumulate in the fractured rock underneath a waste package as it degrades. This AMR is to feed the geochemical calculations for external criticality reports. This AMR is done in accordance with the technical work plan (BSC (Bechtel SAIC Company) 2001 b). The scope of this AMR is restricted to the relevant parameters of the fracture system. The main parameters of interest are fracture aperture and fracture spacing distribution parameters. The relative orientation of the different fracture sets is also important because of its impact on criticality, but they will be set deterministically. The maximum accumulation of material depends primarily on the fracture porosity, combination of the fracture aperture, and fracture intensity. However, the fracture porosity itself is not sufficient to characterize the potential for accumulation of a fracture system. The fracture aperture is also important because it controls both the flow through the fracture and the potential plugging of the system. Other features contributing to the void space such as lithophysae are also investigated. On the other hand, no analysis of the matrix porosity is done. The parameters will be used in sensitivity analyses of geochemical calculations providing actinide accumulations and in the subsequent Monte Carlo criticality analyses.
Date: September 21, 2001
Creator: Nicot, Jean-Philippe
Partner: UNT Libraries Government Documents Department

Synchrotron radiation issues in future hadron colliders

Description: Hadron machines mostly use high field superconducting magnets operating at low temperatures. Therefore the issue of extracting a SR power heat load becomes more critical and costly. Conceptual solutions to the problem exist in the form of beam screens and photon stops. Cooled beam screens are more expensive in production and operation than photon stops, but they are, unlike photon stops, routinely used in existing machines. Photon stops are the most economical solution because the heat load is extracted at room temperature. They presently consider it most prudent to work with a combined beam screen and photon stop approach, in which the photon stop absorbs most of the SR power, and the beam screen serves only the vacuum purpose. Provided that the recently launched photon stop R and D [10] supports it, we would like to explore solutions with photon stops only. This would allow to reduce the magnet apertures to a certain extent with respect to those required to accommodate high SR power compliant beam screens and reduce cost. The possibility of magnet designs, which have larger vertical apertures where large cooling capillaries can be housed at no additional cost, would allow to soften this statement somewhat and should therefore be pursued as well.
Date: November 21, 2002
Creator: Bauer, P.; Darve, C. & Terechkine, I.
Partner: UNT Libraries Government Documents Department

Modeling and Demonstration of a Saturated Ni-Like Mo X-Ray Laser

Description: The technique of using a nsec pulse to preform and ionize the plasma followed by a psec pulse to heat the plasma has enabled us to achieve saturated laser output for low-Z neon-like and nickel-like ions driven by small lasers with less than ten joules of energy. In this work we present and model recent experiments done using the COMET laser at Lawrence Livermore National Laboratory to illuminate slab targets of Mo up to 1 cm long with a one joule, 600 ps prepulse followed 700 psec later by a five joule, one psec drive pulse. The experiments demonstrate saturated output on the Ni-like Mo 3d{sup 9} 4d {sup 1}S{sub 0} {yields} 3d{sup 9} 4p {sup 1}P{sub 1} laser line at 18.9 nm. The small signal gain and gain length product are estimated by measuring the laser output versus target length. Experiments are done using multilayer mirrors to obtain two-dimensional images of the output aperture of the laser and to measure the total laser energy as a function of various parameters such as the delay between the short and long pulses and the energy of the two pulses. To model the experiments the LASNEX code is used to calculate the hydrodynamic evolution of the plasma and provide the temperatures and densities to the XRASER code, which then does the kinetics calculations to determine the gain, The temporal and spatial evolution of the plasma is studied both with and without radiation transport included for the 4f and 4p {yields} 3d Ni-like Mo resonance lines. High gains are predicted for both the 3d{sup 9} 4d {sup 1}S{sub 0} {yields} 3d{sup 9} 4p {sup 1}P{sub 1} laser line at 18.9 nm and the 3d{sup 9} 4f {sup 1}P{sub 1} {yields} 3d{sup 9} 4d {sup 1}P{sub 1} photopumped line which is observed to lase ...
Date: August 21, 2000
Creator: Nilsen, J.
Partner: UNT Libraries Government Documents Department

Impact of Drill and Blast Excavation on Repository Performance Confirmation

Description: There has been considerable work accomplished internationally examining the effects of drill and blast excavation on rock masses surrounding emplacement openings of proposed nuclear waste repositories. However, there has been limited discussion tying the previous work to performance confirmation models such as those proposed for Yucca Mountain, Nevada. This paper addresses a possible approach to joining the available information on drill and blast excavation and performance confirmation. The method for coupling rock damage data from drill and blast models to performance assessment models for fracture flow requires a correlation representing the functional relationship between the peak particle velocity (PPV) vibration levels and the potential properties that govern water flow rates in the host rock. Fracture aperture and frequency are the rock properties which may be most influenced by drill and blast induced vibration. If it can be shown (using an appropriate blasting model simulation) that the effect of blasting is far removed from the waste package in an emplacement drift, then disturbance to the host rock induced in the process of drill and blast excavation may be reasonably ignored in performance assessment calculations. This paper proposes that the CANMET (Canada Center for Mineral and Energy Technology) Criterion, based on properties that determine rock strength, may be used to define a minimum PPV. This PPV can be used to delineate the extent of blast induced damage. Initial applications have demonstrated that blasting models can successfully be coupled with this criterion to predict blast damage surrounding underground openings. The Exploratory Studies Facility at Yucca Mountain has used a blasting model to generate meaningful estimates of near-field vibration levels and damage envelopes correlating to data collected from pre-existing studies conducted. Further work is underway to expand this application over a statistical distribution of geologic parameters, encompassing all the rock types that will be ...
Date: August 21, 2000
Creator: Keller, R.; Francis, N.; Houseworth, J. & Kramer, N.
Partner: UNT Libraries Government Documents Department

The LIFE Laser Design in Context: A Comparison to the State-of-the-Art

Description: The current point design for the LIFE laser leverages decades of solid-state laser development in order to achieve the performance and attributes required for inertial fusion energy. This document provides a brief comparison of the LIFE laser point design to other state-of-the-art solid-state lasers. Table I compares the attributes of the current LIFE laser point design to other systems. the state-of-the-art for single-shot performance at fusion-relevant beamline energies is exemplified by performance observed on the National Ignition Facility. The state-of-the-art for high average power is exemplified by the Northrup Grumman JHPSSL laser. Several items in Table I deal with the laser efficiency; a more detailed discussion of efficiency can be found in reference 5. The electrical-to-optical efficiency of the LIFE design exceeds that of reference 4 due to the availability of higher efficiency laser diode pumps (70% vs. {approx}50% used in reference 4). LIFE diode pumps are discussed in greater detail in reference 6. The 'beam steering' state of the art is represented by the deflection device that will be used in the LIFE laser, not a laser system. Inspection of Table I shows that most LIFE laser attributes have already been experimentally demonstrated. The two cases where the LIFE design is somewhat better than prior experimental work do not involve the development of new concepts: beamline power is increased simply by increasing aperture (as demonstrated by the power/aperture comparison in Table I), and efficiency increases are achieved by employing state-of-the-art diode pumps. In conclusion, the attributes anticipated for the LIFE laser are consistent with the demonstrated performance of existing solid-state lasers.
Date: March 21, 2011
Creator: Deri, R. J.; Bayramian, A. J. & Erlandson, A. C.
Partner: UNT Libraries Government Documents Department

The Mercury Laser Advances Laser Technology for Power Generation

Description: The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.
Date: January 21, 2009
Creator: Ebbers, C A; Caird, J & Moses, E
Partner: UNT Libraries Government Documents Department

Tracking Studies to Determine the Required Wiggler Aperture forthe ILC Damping Rings

Description: The injection efficiency of an ILC damping ring is closely tied to its acceptance. To maximize both, one wants a physical aperture as large as possible in the wiggler magnets, as these are likely to be the limiting physical apertures in the ring. On the other hand, a small aperture in the wiggler magnets is needed to achieve the required field profile, a high magnetic field that is very linear over the whole physical aperture of the magnet. Tracking studies were done for all proposed ILC damping ring lattices to determine their required physical apertures. Although a half-aperture of 8 or 10mm had been proposed, our studies showed that, for most lattices, a 16mm half-aperture is required. For some lattices a 12mm half aperture might suffice. We present here the results of our studies, which led to adopting a 16mm half-aperture in the current ILC damping ring baseline design.
Date: June 21, 2006
Creator: Reichel, I. & Wolski, A.
Partner: UNT Libraries Government Documents Department

Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir

Description: A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.
Date: January 21, 1986
Creator: Miller, John D. & Allman, David W.
Partner: UNT Libraries Government Documents Department

Bent Solenoids with Superimposed Dipole Fields

Description: A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.
Date: March 21, 2000
Creator: Meinke, Rainer, B. & Goodzeit, Carl, L.
Partner: UNT Libraries Government Documents Department

Fringe-free, Background-free, Collinear Third Harmonic Generation FROG Measurements for Multiphoton Microscopy

Description: Collinear pulse measurement tools useful at the full numerical aperture (NA) of multiphoton microscope objectives are a necessity for a quantitative characterization of the femtosecond pulses focused by these systems. In this letter, we demonstrate a simple new technique, for characterizing the pulse at the focus in a multiphoton microscope. This technique, a background-free, fringe-free, form of frequency-resolved optical gating, uses the third harmonic signal generated from a glass coverslip. Here it is used to characterize 100 fs pulses (typical values for a multiphoton microscope) at the focus of a 0.65 NA objective.
Date: July 21, 2006
Creator: Chadwick, R; Spahr, E; Squier, J A; Durfee, C G; Walker, B C & Fittinghoff, D N
Partner: UNT Libraries Government Documents Department

Status of the "ARC", a Quad of High-Intensity Beam Lines at the National Ignition Facility

Description: We present the status of plans to commission a short-pulse, quad of beams on the National Ignition Facility (NIF), capable of generating > 10 kJ of energy in 10 ps. These beams will initially provide an advanced radiographic capability (ARC) to generate brilliant, x-ray back-lighters for diagnosing fuel density and symmetry during ignition experiments. A fiber, mode-locked oscillator generates the seed pulse for the ARC beam line in the NIF master oscillator room (MOR). The 200 fs, 1053 nm oscillator pulse is amplified and stretched in time using a chirped-fiber-Bragg grating. The stretched pulse is split to follow two separate beam paths through the chain. Each pulse goes to separate pulse tweakers where the dispersion can be adjusted to generate a range of pulse widths and delays at the compressor output. After further fiber amplification the two pulses are transported to the NIF preamplifier area and spatially combined using shaping masks to form a split-spatial-beam profile that fits in a single NIF aperture. This split beam propagates through a typical NIF chain where the energy is amplified to several kilojoules. A series of mirrors directs the amplified, split beam to a folded grating compressor that is located near the equator of the NIF target chamber. Figure 1 shows a layout of the beam transport and folded compressor, showing the split beam spatial profile. The folder compressor contains four pairs of large, multi-layer-dielectric gratings; each grating in a pair accepts half of the split beam. The compressed output pulse can be 0.7-50 ps in duration, depending on the setting of the pulse tweaker in the MOR. The compressor output is directed to target chamber center using four additional mirrors that include a 9 meter, off-axis parabola. The final optic, immediately following the parabola, is a pair of independently adjustable mirrors that ...
Date: June 21, 2006
Creator: Crane, J. K.; Arnold, P.; Beach, R. J.; Betts, S.; Boley, C.; Chang, M. et al.
Partner: UNT Libraries Government Documents Department

Predicting dissolution patterns in variable aperture fractures: 1. Development and evaluation of an enhanced depth-averaged computational model

Description: Water-rock interactions within variable-aperture fractures can lead to dissolution of fracture surfaces and local alteration of fracture apertures, potentially transforming the transport properties of the fracture over time. Because fractures often provide dominant pathways for subsurface flow and transport, developing models that effectively quantify the role of dissolution on changing transport properties over a range of scales is critical to understanding potential impacts of natural and anthropogenic processes. Dissolution of fracture surfaces is controlled by surface-reaction kinetics and transport of reactants and products to and from the fracture surfaces. We present development and evaluation of a depth-averaged model of fracture flow and reactive transport that explicitly calculates local dissolution-induced alterations in fracture apertures. The model incorporates an effective mass transfer relationship that implicitly represents the transition from reaction-limited dissolution to transport-limited dissolution. We evaluate the model through direct comparison to previously reported physical experiments in transparent analog fractures fabricated by mating an inert, transparent rough surface with a smooth single crystal of potassium dihydrogen phosphate (KDP), which allowed direct measurement of fracture aperture during dissolution experiments using well-established light transmission techniques [Detwiler, et al., 2003]. Comparison of experiments and simulations at different flow rates demonstrate the relative impact of the dimensionless Peclet and Damkohler numbers on fracture dissolution and the ability of the computational model to simulate dissolution. Despite some discrepancies in the small-scale details of dissolution patterns, the simulations predict the evolution of large-scale features quite well for the different experimental conditions. This suggests that our depth-averaged approach to simulating fracture dissolution provides a useful approach for extending laboratory results that are often limited in scale to scales that are more representative of geologic processes of interest.
Date: April 21, 2006
Creator: Detwiler, R L & Rajaram, H
Partner: UNT Libraries Government Documents Department

Negative Transconductance in Apertured Electron Guns

Description: Passing an electron beam through an aperture can serve to reduce the beam current or change the transverse beam profile. For a sufficiently intense beam, space charge will drive a radial expansion of the beam, which may cause the current passing through the aperture to increase even though the current arriving at the aperture is decreasing. When a gridded electron gun is used, this may be expressed by stating that the transconductance of the apertured gun is negative. Here we explain this effect, and explore some of the key factors governing when it can occur and influencing its strength.
Date: September 21, 2007
Creator: Harris, J R & O'Shea, P G
Partner: UNT Libraries Government Documents Department

Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

Description: The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS configurations have a resolution of 7 microns or better. ...
Date: August 21, 2007
Creator: Barrera, C A & Moran, M J
Partner: UNT Libraries Government Documents Department

Modified diamond dies for laser applications

Description: A modified wire drawing die for spatial filtering techniques is described. It was designed for use in high power laser systems. The diamond aperture is capable of enduring high intensity laser frequency without damaging the laser beam profile. The diamond is mounted at the beam focus in a vacuum of 1 x 10/sup -5/ Torr. The vacuum prevents plasma forming at the diamond aperture, thus enabling the beam to pass through without damaging the holder or aperture. The spatial filters are fitted with a manipulator that has three electronic stepping motors, can position the aperture in three orthogonal directions, and is capable of 3.2 ..mu..m resolution. Shiva laser system is using 105 diamond apertures for shaping the High Energy Laser Beam.
Date: June 21, 1978
Creator: McWilliams, R.A.
Partner: UNT Libraries Government Documents Department

Studies of closure phenomena in pinholes irradiated by Nd laser pulses

Description: The plasma closure of spatial filter pinholes is a critical parameter in the performance of high energy glass laser systems. Using 50 to 100 J, 300 psec FWHM laser pulses on the Janus laser, an investigation has been made on closure effects in 300 ..mu..m to 500 ..mu..m diameter pinholes of various materials and thicknesses. Calorimetry measurements have yielded data on pinhole transmission and intensity loading on the periphery of the pinhole. Ultrafast streak photography measurements indicate effective closure velocities of 2 x 10/sup 7/ cm/sec to 5 x 10/sup 7/ cm/sec. Scattered light measurements have shown the transmission loss through a typical spatial filter configuration to be primarily refractive in nature.
Date: August 21, 1978
Creator: Auerbach, J.M.; Holmes, N.C.; Hunt, J.T. & Linford, G.J.
Partner: UNT Libraries Government Documents Department

Modeling of Laser Induced Damage in NIF UV Optics

Description: Controlling damage to nominally transparent optical elements such as lenses, windows and frequency conversion crystals on high power lasers is a continuing technical problem. Scientific understanding of the underlying mechanisms of laser energy absorption, material heating and vaporization and resultant mechanical damage is especially important for UV lasers with large apertures such as NIF. This LDRD project was a single year effort, in coordination with associated experimental projects, to initiate theoretical descriptions of several of the relevant processes. In understanding laser damage, we distinguish between damage initiation and the growth of existent damage upon subsequent laser irradiation. In general, the effect of damage could be ameliorated by either preventing its initiation or by mitigating its growth. The distinction comes about because initiation is generally due to extrinsic factors such as contaminants, which provide a means of local laser energy absorption. Thus, initiation tends to be local and stochastic in nature. On the other hand, the initial damaging event appears to modify the surrounding material in such a way that multiple pulse damage grows more or less regularly. More exactly, three ingredients are necessary for visible laser induced damage. These are adequate laser energy, a mechanism of laser energy absorption and mechanical weakness. For damage growth, the material surrounding a damage site is already mechanically weakened by cracks and probably chemically modified as well. The mechanical damage can also lead to electric field intensification due to interference effects, thus increasing the available laser energy density. In this project, we successfully accounted for the pulselength dependence of damage threshold in bulk DKDP crystals with the hypothesis of small absorbers with a distribution of sizes. We theoretically investigated expected scaling of damage initiation craters both to baseline detailed numerical simulations presently underway and to aid identification of damage initiators. Ancillary experimental techniques intended ...
Date: February 21, 2001
Creator: Feit, M D & Rubenchik, A M
Partner: UNT Libraries Government Documents Department

Initiation, Growth and Mitigation of UV Laser Induced Damage in Fused Silica

Description: Laser damage of large fused silica optics initiates at imperfections. Possible initiation mechanisms are considered. We demonstrate that a model based on nanoparticle explosions is consistent with the observed initiation craters. Possible mechanisms for growth upon subsequent laser irradiation, including material modification and laser intensification, are discussed. Large aperture experiments indicate an exponential increase in damage size with number of laser shots. Physical processes associated with this growth and a qualitative explanation of self-accelerated growth is presented. Rapid growth necessitates damage growth mitigation techniques. Several possible mitigation techniques are mentioned, with special emphasis on CO{sub 2} processing. Analysis of material evaporation, crack healing, and thermally induced stress are presented.
Date: December 21, 2001
Creator: Rubenchik, A M & Feit, M D
Partner: UNT Libraries Government Documents Department

Large-area PSPMT based gamma-ray imager with edge reclamation

Description: We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery of over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.
Date: September 21, 2000
Creator: Ziock, K-P & Nakae, L
Partner: UNT Libraries Government Documents Department

Laser- and Radar-based Mission Concepts for Suborbital and Spaceborne Monitoring of Seismic Surface Waves

Description: The development of a suborbital or spaceborne system to monitor seismic waves poses an intriguing prospect for advancing the state of seismology. This capability would enable an unprecedented global mapping of the velocity structure of the earth's crust, understanding of earthquake rupture dynamics and wave propagation effects, and event source location, characterization and discrimination that are critical for both fundamental earthquake research and nuclear non-proliferation applications. As part of an ongoing collaboration between LLNL and JPL, an advanced mission concept study assessed architectural considerations and operational and data delivery requirements, extending two prior studies by each organization--a radar-based satellite system (JPL) for earthquake hazard assessment and a feasibility study of space- or UAV-based laser seismometer systems (LLNL) for seismic event monitoring. Seismic wave measurement requirements include lower bounds on detectability of specific seismic sources of interest and wave amplitude accuracy for different levels of analysis, such as source characterization, discrimination and tomography, with a 100 {micro}m wave amplitude resolution for waves nominally traveling 5 km/s, an upper frequency bound based on explosion and earthquake surface displacement spectra, and minimum horizontal resolution (1-5 km) and areal coverage, in general and for targeted observations. For a radar system, corresponding engineering and operational factors include: Radar frequency (dictated by required wave amplitude measurement accuracy and maximizing ranging, Doppler or interferometric sensitivity), time sampling (maximum seismic wave frequency and velocity), and overall system considerations such as mass, power and data rate. Technical challenges include characterization of, and compensation for, phase distortion resulting from atmospheric and ionospheric perturbations and turbulence, and effects of ground scattering characteristics and seismic ground motion on phase coherence over interferometric time intervals. Since the temporal sampling requirement may be finer than that possible for a high-altitude sensor to traverse a synthetic aperture length, a geostationary, real-aperture Ka-band system or constellation ...
Date: September 21, 2004
Creator: Foxall, W; Schultz, C A & Tralli, D M
Partner: UNT Libraries Government Documents Department

Probability Density and CFAR Threshold Estimation for Hyperspectral Imaging

Description: The work reported here shows the proof of principle (using a small data set) for a suite of algorithms designed to estimate the probability density function of hyperspectral background data and compute the appropriate Constant False Alarm Rate (CFAR) matched filter decision threshold for a chemical plume detector. Future work will provide a thorough demonstration of the algorithms and their performance with a large data set. The LASI (Large Aperture Search Initiative) Project involves instrumentation and image processing for hyperspectral images of chemical plumes in the atmosphere. The work reported here involves research and development on algorithms for reducing the false alarm rate in chemical plume detection and identification algorithms operating on hyperspectral image cubes. The chemical plume detection algorithms to date have used matched filters designed using generalized maximum likelihood ratio hypothesis testing algorithms [1, 2, 5, 6, 7, 12, 10, 11, 13]. One of the key challenges in hyperspectral imaging research is the high false alarm rate that often results from the plume detector [1, 2]. The overall goal of this work is to extend the classical matched filter detector to apply Constant False Alarm Rate (CFAR) methods to reduce the false alarm rate, or Probability of False Alarm P{sub FA} of the matched filter [4, 8, 9, 12]. A detector designer is interested in minimizing the probability of false alarm while simultaneously maximizing the probability of detection P{sub D}. This is summarized by the Receiver Operating Characteristic Curve (ROC) [10, 11], which is actually a family of curves depicting P{sub D} vs. P{sub FA}parameterized by varying levels of signal to noise (or clutter) ratio (SNR or SCR). Often, it is advantageous to be able to specify a desired P{sub FA} and develop a ROC curve (P{sub D} vs. decision threshold r{sub 0}) for that case. That is ...
Date: September 21, 2004
Creator: Clark, G A
Partner: UNT Libraries Government Documents Department