153 Matching Results

Search Results

Advanced search parameters have been applied.

Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Description: Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference.
Date: May 2007
Creator: Kincaid, Cheryl-Annette
Partner: UNT Libraries

Human concept cognition and semantic relations in the unified medical language system: A coherence analysis.

Description: There is almost a universal agreement among scholars in information retrieval (IR) research that knowledge representation needs improvement. As core component of an IR system, improvement of the knowledge representation system has so far involved manipulation of this component based on principles such as vector space, probabilistic approach, inference network, and language modeling, yet the required improvement is still far from fruition. One promising approach that is highly touted to offer a potential solution exists in the cognitive paradigm, where knowledge representation practice should involve, or start from, modeling the human conceptual system. This study based on two related cognitive theories: the theory-based approach to concept representation and the psychological theory of semantic relations, ventured to explore the connection between the human conceptual model and the knowledge representation model (represented by samples of concepts and relations from the unified medical language system, UMLS). Guided by these cognitive theories and based on related and appropriate data-analytic tools, such as nonmetric multidimensional scaling, hierarchical clustering, and content analysis, this study aimed to conduct an exploratory investigation to answer four related questions. Divided into two groups, a total of 89 research participants took part in two sets of cognitive tasks. The first group (49 participants) sorted 60 food names into categories followed by simultaneous description of the derived categories to explain the rationale for category judgment. The second group (40 participants) performed sorting 47 semantic relations (the nonhierarchical associative types) into 5 categories known a priori. Three datasets resulted as a result of the cognitive tasks: food-sorting data, relation-sorting data, and free and unstructured text of category descriptions. Using the data analytic tools mentioned, data analysis was carried out and important results and findings were obtained that offer plausible explanations to the 4 research questions. Major results include the following: (a) through discriminant ...
Date: August 2007
Creator: Assefa, Shimelis G.
Partner: UNT Libraries

An exploration of the diffusion of a new technology from communities of practice perspective: Web services technologies in digital libraries.

Description: This study explored and described decision factors related to technology adoption. The research used diffusion of innovations and communities of practice (CoP) theoretical frameworks and a case study of Web services technology in the digital library (DL) environment to develop an understanding of the decision-making process. A qualitative case study approach was used to investigate the research problems and data were collected through semi-structured interviews, documentary evidence (e.g., meeting minutes), and a comprehensive member check. The research conducted face-to-face and phone interviews with seven respondents with different job titles (administraive vs. technical) from five different DL programs selected based on distinctive characteristics such as size of the DL program. Findings of the research suggested that the decision-making process is a complex process in which a number of factors are considered when making technology adoption decisions. These factors are categorized as organizational, individual, and technology specific factors. Further, data showed that DL CoPs played an important role in enabling staff members of a DL program to access up-to-date and experienced-based knowledge, provided a distributed problem solving and learning environment, facilitating informal communication and collaborative activities, and informing the decision-making process.
Date: August 2007
Creator: Oguz, Fatih
Partner: UNT Libraries

Performance Analysis of Wireless Networks with QoS Adaptations

Description: The explosive demand for multimedia and fast transmission of continuous media on wireless networks means the simultaneous existence of traffic requiring different qualities of service (QoS). In this thesis, several efficient algorithms have been developed which offer several QoS to the end-user. We first look at a request TDMA/CDMA protocol for supporting wireless multimedia traffic, where CDMA is laid over TDMA. Then we look at a hybrid push-pull algorithm for wireless networks, and present a generalized performance analysis of the proposed protocol. Some of the QoS factors considered include customer retrial rates due to user impatience and system timeouts and different levels of priority and weights for mobile hosts. We have also looked at how customer impatience and system timeouts affect the QoS provided by several queuing and scheduling schemes such as FIFO, priority, weighted fair queuing, and the application of the stretch-optimal algorithm to scheduling.
Date: August 2003
Creator: Dash, Trivikram
Partner: UNT Libraries

XML-Based Agent Scripts and Inference Mechanisms

Description: Natural language understanding has been a persistent challenge to researchers in various computer science fields, in a number of applications ranging from user support systems to entertainment and online teaching. A long term goal of the Artificial Intelligence field is to implement mechanisms that enable computers to emulate human dialogue. The recently developed ALICEbots, virtual agents with underlying AIML scripts, by A.L.I.C.E. foundation, use AIML scripts - a subset of XML - as the underlying pattern database for question answering. Their goal is to enable pattern-based, stimulus-response knowledge content to be served, received and processed over the Web, or offline, in the manner similar to HTML and XML. In this thesis, we describe a system that converts the AIML scripts to Prolog clauses and reuses them as part of a knowledge processor. The inference mechanism developed in this thesis is able to successfully match the input pattern with our clauses database even if words are missing. We also emulate the pattern deduction algorithm of the original logic deduction mechanism. Our rules, compatible with Semantic Web standards, bring structure to the meaningful content of Web pages and support interactive content retrieval using natural language.
Date: August 2003
Creator: Sun, Guili
Partner: UNT Libraries

Building an Intelligent Filtering System Using Idea Indexing

Description: The widely used vector model maintains its popularity because of its simplicity, fast speed, and the appeal of using spatial proximity for semantic proximity. However, this model faces a disadvantage that is associated with the vagueness from keywords overlapping. Efforts have been made to improve the vector model. The research on improving document representation has been focused on four areas, namely, statistical co-occurrence of related items, forming term phrases, grouping of related words, and representing the content of documents. In this thesis, we propose the idea-indexing model to improve document representation for the filtering task in IR. The idea-indexing model matches document terms with the ideas they express and indexes the document with these ideas. This indexing scheme represents the document with its semantics instead of sets of independent terms. We show in this thesis that indexing with ideas leads to better performance.
Date: August 2003
Creator: Yang, Li
Partner: UNT Libraries

Improving Topic Tracking with Domain Chaining

Description: Topic Detection and Tracking (TDT) research has produced some successful statistical tracking systems. While lexical chaining, a non-statistical approach, has also been applied to the task of tracking by Carthy and Stokes for the 2001 TDT evaluation, an efficient tracking system based on this technology has yet to be developed. In thesis we investigate two new techniques which can improve Carthy's original design. First, at the core of our system is a semantic domain chainer. This chainer relies not only on the WordNet database for semantic relationships but also on Magnini's semantic domain database, which is an extension of WordNet. The domain-chaining algorithm is a linear algorithm. Second, to handle proper nouns, we gather all of the ones that occur in a news story together in a chain reserved for proper nouns. In this thesis we also discuss the linguistic limitations of lexical chainers to represent textual meaning.
Date: August 2003
Creator: Yang, Li
Partner: UNT Libraries

Routing Optimization in Wireless Ad Hoc and Wireless Sensor Networks

Description: Wireless ad hoc networks are expected to play an important role in civilian and military settings where wireless access to wired backbone is either ineffective or impossible. Wireless sensor networks are effective in remote data acquisition. Congestion control and power consumption in wireless ad hoc networks have received a lot of attention in recent research. Several algorithms have been proposed to reduce congestion and power consumption in wireless ad hoc and sensor networks. In this thesis, we focus upon two schemes, which deal with congestion control and power consumption issues. This thesis consists of two parts. In the first part, we describe a randomization scheme for congestion control in dynamic source routing protocol, which we refer to as RDSR. We also study a randomization scheme for GDSR protocol, a GPS optimized variant of DSR. We discuss RDSR and RGDSR implementations and present extensive simulation experiments to study their performance. Our results indicate that both RGDSR and RDSR protocols outperform their non-randomized counterparts by decreasing the number of route query packets. Furthermore, a probabilistic congestion control scheme based on local tuning of routing protocol parameters is shown to be feasible. In the second part we present a simulation based performance study of energy aware data centric routing protocol, EAD, proposed by X. Cheng and A. Boukerche. EAD reduces power consumption by requiring only a small percentage of the network to stay awake. Our experiments show that EAD outperforms the well-known LEACH scheme.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Joseph, Linus
Partner: UNT Libraries

Intelligent Memory Management Heuristics

Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Date: December 2003
Creator: Panthulu, Pradeep
Partner: UNT Libraries

Agent Extensions for Peer-to-Peer Networks.

Description: Peer-to-Peer (P2P) networks have seen tremendous growth in development and usage in recent times. This attention has brought many developments as well as new challenges to these networks. We will show that agent extensions to P2P networks offer solutions to many problems faced by P2P networks. In this research, an attempt is made to bring together JXTA P2P infrastructure and Jinni, a Prolog based agent engine to form an agent based P2P network. On top of the JXTA, we define simple Java API providing P2P services for agent programming constructs. Jinni is deployed on this JXTA network using an automated code update mechanism. Experiments are conducted on this Jinni/JXTA platform to implement a simple agent communication and data exchange protocol.
Date: December 2003
Creator: Valiveti, Kalyan
Partner: UNT Libraries

Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation

Description: Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2003
Creator: Song, Yongqiang
Partner: UNT Libraries

Performance comparison of data distribution management strategies in large-scale distributed simulation.

Description: Data distribution management (DDM) is a High Level Architecture/Run-time Infrastructure (HLA/RTI) service that manages the distribution of state updates and interaction information in large-scale distributed simulations. The key to efficient DDM is to limit and control the volume of data exchanged during the simulation, to relay data to only those hosts requiring the data. This thesis focuses upon different DDM implementations and strategies. This thesis includes analysis of three DDM methods including the fixed grid-based, dynamic grid-based, and region-based methods. Also included is the use of multi-resolution modeling with various DDM strategies and analysis of the performance effects of aggregation/disaggregation with these strategies. Running numerous federation executions, I simulate four different scenarios on a cluster of workstations with a mini-RTI Kit framework and propose a set of benchmarks for a comparison of the DDM schemes. The goals of this work are to determine the most efficient model for applying each DDM scheme, discover the limitations of the scalability of the various DDM methods, evaluate the effects of aggregation/disaggregation on performance and resource usage, and present accepted benchmarks for use in future research.
Date: May 2004
Creator: Dzermajko, Caron
Partner: UNT Libraries

A general purpose semantic parser using FrameNet and WordNet®.

Description: Syntactic parsing is one of the best understood language processing applications. Since language and grammar have been formally defined, it is easy for computers to parse the syntactic structure of natural language text. Does meaning have structure as well? If it has, how can we analyze the structure? Previous systems rely on a one-to-one correspondence between syntactic rules and semantic rules. But such systems can only be applied to limited fragments of English. In this thesis, we propose a general-purpose shallow semantic parser which utilizes a semantic network (WordNet), and a frame dataset (FrameNet). Semantic relations recognized by the parser are based on how human beings represent knowledge of the world. Parsing semantic structure allows semantic units and constituents to be accessed and processed in a more meaningful way than syntactic parsing, moving the automation of understanding natural language text to a higher level.
Date: May 2004
Creator: Shi, Lei
Partner: UNT Libraries

An Empirical Evaluation of Communication and Coordination Effectiveness in Autonomous Reactive Multiagent Systems

Description: This thesis describes experiments designed to measure the effect of collaborative communication on task performance of a multiagent system. A discrete event simulation was developed to model a multi-agent system completing a task to find and collect food resources, with the ability to substitute various communication and coordination methods. Experiments were conducted to find the effects of the various communication methods on completion of the task to find and harvest the food resources. Results show that communication decreases the time required to complete the task. However, all communication methods do not fare equally well. In particular, results indicate that the communication model of the bee is a particularly effective method of agent communication and collaboration. Furthermore, results indicate that direct communication with additional information content provides better completion results. Cost-benefit models show some conflicting information, indicating that the increased performance may not offset the additional cost of achieving that performance.
Date: May 2005
Creator: Hurt, David
Partner: UNT Libraries

A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations

Description: Natural language is inherently ambiguous. For example, the word "bank" can mean a financial institution or a river shore. Finding the correct meaning of a word in a particular context is a task known as word sense disambiguation (WSD), which is essential for many natural language processing applications such as machine translation, information retrieval, and others. While most current WSD methods try to disambiguate a small number of words for which enough annotated examples are available, the method proposed in this thesis attempts to address all words in unrestricted text. The method is based on constraints imposed by syntactic dependencies and concept generalizations drawn from an external dictionary. The method was tested on standard benchmarks as used during the SENSEVAL-2 and SENSEVAL-3 WSD international evaluation exercises, and was found to be competitive.
Date: December 2005
Creator: Faruque, Md. Ehsanul
Partner: UNT Libraries

Planning techniques for agent based 3D animations.

Description: The design of autonomous agents capable of performing a given goal in a 3D domain continues to be a challenge for computer animated story generation systems. We present a novel prototype which consists of a 3D engine and a planner for a simple virtual world. We incorporate the 2D planner into the 3D engine to provide 3D animations. Based on the plan, the 3D world is created and the objects are positioned. Then the plan is linearized into simpler actions for object animation and rendered via the 3D engine. We use JINNI3D as the engine and WARPLAN-C as the planner for the above-mentioned prototype. The user can interact with the system using a simple natural language interface. The interface consists of a shallow parser, which is capable of identifying a set of predefined basic commands. The command given by the user is considered as the goal for the planner. The resulting plan is created and rendered in 3D. The overall system is comparable to a character based interactive story generation system except that it is limited to the predefined 3D environment.
Date: December 2005
Creator: Kandaswamy, Balasubramanian
Partner: UNT Libraries

The enhancement of machine translation for low-density languages using Web-gathered parallel texts.

Description: The majority of the world's languages are poorly represented in informational media like radio, television, newspapers, and the Internet. Translation into and out of these languages may offer a way for speakers of these languages to interact with the wider world, but current statistical machine translation models are only effective with a large corpus of parallel texts - texts in two languages that are translations of one another - which most languages lack. This thesis describes the Babylon project which attempts to alleviate this shortage by supplementing existing parallel texts with texts gathered automatically from the Web -- specifically targeting pages that contain text in a pair of languages. Results indicate that parallel texts gathered from the Web can be effectively used as a source of training data for machine translation and can significantly improve the translation quality for text in a similar domain. However, the small quantity of high-quality low-density language parallel texts on the Web remains a significant obstacle.
Date: December 2007
Creator: Mohler, Michael Augustine Gaylord
Partner: UNT Libraries

Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus

Description: Many human papilloma virus (HPV) types are sexually transmitted and HPV DNA types 16, 18, 31, and 45 account for more than 75% if all cervical dysplasia. Candidate vaccines are successfully completing US Federal Drug Agency (FDA) phase III testing and several drug companies are in licensing arbitration. Once this vaccine become available it is unlikely that 100% vaccination coverage will be probable; hence, the need for vaccination strategies that will have the greatest reduction on the endemic prevalence of HPV. This thesis introduces two discrete-time models for evaluating the effect of demographic-biased vaccination strategies: one model incorporates temporal demographics (i.e., age) in population compartments; the other non-temporal demographics (i.e., race, ethnicity). Also presented is an intuitive Web-based interface that was developed to allow the user to evaluate the effects on prevalence of a demographic-biased intervention by tailoring the model parameters to specific demographics and geographical region.
Date: May 2006
Creator: Corley, Courtney D.
Partner: UNT Libraries

Towards Communicating Simple Sentence using Pictorial Representations

Description: Language can sometimes be an impediment in communication. Whether we are talking about people who speak different languages, students who are learning a new language, or people with language disorders, the understanding of linguistic representations in a given language requires a certain amount of knowledge that not everybody has. In this thesis, we propose "translation through pictures" as a means for conveying simple pieces of information across language barriers, and describe a system that can automatically generate pictorial representations for simple sentences. Comparative experiments conducted on visual and linguistic representations of information show that a considerable amount of understanding can be achieved through pictorial descriptions, with results within a comparable range of those obtained with current machine translation techniques. Moreover, a user study conducted around the pictorial translation system reveals that users found the system to generally produce correct word/image associations, and rate the system as interactive and intelligent.
Date: May 2006
Creator: Leong, Chee Wee
Partner: UNT Libraries

Using Reinforcement Learning in Partial Order Plan Space

Description: Partial order planning is an important approach that solves planning problems without completely specifying the orderings between the actions in the plan. This property provides greater flexibility in executing plans; hence making the partial order planners a preferred choice over other planning methodologies. However, in order to find partially ordered plans, partial order planners perform a search in plan space rather than in space of world states and an uninformed search in plan space leads to poor efficiency. In this thesis, I discuss applying a reinforcement learning method, called First-visit Monte Carlo method, to partial order planning in order to design agents which do not need any training data or heuristics but are still able to make informed decisions in plan space based on experience. Communicating effectively with the agent is crucial in reinforcement learning. I address how this task was accomplished in plan space and the results from an evaluation of a blocks world test bed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2006
Creator: Ceylan, Hakan
Partner: UNT Libraries

Natural Language Interfaces to Databases

Description: Natural language interfaces to databases (NLIDB) are systems that aim to bridge the gap between the languages used by humans and computers, and automatically translate natural language sentences to database queries. This thesis proposes a novel approach to NLIDB, using graph-based models. The system starts by collecting as much information as possible from existing databases and sentences, and transforms this information into a knowledge base for the system. Given a new question, the system will use this knowledge to analyze and translate the sentence into its corresponding database query statement. The graph-based NLIDB system uses English as the natural language, a relational database model, and SQL as the formal query language. In experiments performed with natural language questions ran against a large database containing information about U.S. geography, the system showed good performance compared to the state-of-the-art in the field.
Date: December 2006
Creator: Chandra, Yohan
Partner: UNT Libraries

A Framework of Automatic Subject Term Assignment: An Indexing Conception-Based Approach

Description: The purpose of dissertation is to examine whether the understandings of subject indexing processes conducted by human indexers have a positive impact on the effectiveness of automatic subject term assignment through text categorization (TC). More specifically, human indexers' subject indexing approaches or conceptions in conjunction with semantic sources were explored in the context of a typical scientific journal article data set. Based on the premise that subject indexing approaches or conceptions with semantic sources are important for automatic subject term assignment through TC, this study proposed an indexing conception-based framework. For the purpose of this study, three hypotheses were tested: 1) the effectiveness of semantic sources, 2) the effectiveness of an indexing conception-based framework, and 3) the effectiveness of each of three indexing conception-based approaches (the content-oriented, the document-oriented, and the domain-oriented approaches). The experiments were conducted using a support vector machine implementation in WEKA (Witten, & Frank, 2000). The experiment results pointed out that cited works, source title, and title were as effective as the full text, while keyword was found more effective than the full text. In addition, the findings showed that an indexing conception-based framework was more effective than the full text. Especially, the content-oriented and the document-oriented indexing approaches were found more effective than the full text. Among three indexing conception-based approaches, the content-oriented approach and the document-oriented approach were more effective than the domain-oriented approach. In other words, in the context of a typical scientific journal article data set, the objective contents and authors' intentions were more focused that the possible users' needs. The research findings of this study support that incorporation of human indexers' indexing approaches or conception in conjunction with semantic sources has a positive impact on the effectiveness of automatic subject term assignment.
Date: December 2006
Creator: Chung, EunKyung
Partner: UNT Libraries

An Approach Towards Self-Supervised Classification Using Cyc

Description: Due to the long duration required to perform manual knowledge entry by human knowledge engineers it is desirable to find methods to automatically acquire knowledge about the world by accessing online information. In this work I examine using the Cyc ontology to guide the creation of Naïve Bayes classifiers to provide knowledge about items described in Wikipedia articles. Given an initial set of Wikipedia articles the system uses the ontology to create positive and negative training sets for the classifiers in each category. The order in which classifiers are generated and used to test articles is also guided by the ontology. The research conducted shows that a system can be created that utilizes statistical text classification methods to extract information from an ad-hoc generated information source like Wikipedia for use in a formal semantic ontology like Cyc. Benefits and limitations of the system are discussed along with future work.
Date: December 2006
Creator: Coursey, Kino High
Partner: UNT Libraries

Keywords in the mist: Automated keyword extraction for very large documents and back of the book indexing.

Description: This research addresses the problem of automatic keyphrase extraction from large documents and back of the book indexing. The potential benefits of automating this process are far reaching, from improving information retrieval in digital libraries, to saving countless man-hours by helping professional indexers creating back of the book indexes. The dissertation introduces a new methodology to evaluate automated systems, which allows for a detailed, comparative analysis of several techniques for keyphrase extraction. We introduce and evaluate both supervised and unsupervised techniques, designed to balance the resource requirements of an automated system and the best achievable performance. Additionally, a number of novel features are proposed, including a statistical informativeness measure based on chi statistics; an encyclopedic feature that taps into the vast knowledge base of Wikipedia to establish the likelihood of a phrase referring to an informative concept; and a linguistic feature based on sophisticated semantic analysis of the text using current theories of discourse comprehension. The resulting keyphrase extraction system is shown to outperform the current state of the art in supervised keyphrase extraction by a large margin. Moreover, a fully automated back of the book indexing system based on the keyphrase extraction system was shown to lead to back of the book indexes closely resembling those created by human experts.
Date: May 2008
Creator: Csomai, Andras
Partner: UNT Libraries