5 Matching Results

Search Results

Advanced search parameters have been applied.

The SPARX Project: R & D Activity Towards X-Rays FEL Sources

Description: SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.
Date: August 5, 2005
Creator: Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M. E.; Boni, R.; Boscolo, M. et al.
Partner: UNT Libraries Government Documents Department

First Operation of a Free-Electron Laser Generating GW Power Radiation at 32-Nm Wavelength

Description: Many scientific disciplines ranging from physics, chemistry and biology to material sciences, geophysics and medical diagnostics need a powerful X-ray source with pulse lengths in the femtosecond range. This would allow, for example, time-resolved observation of chemical reactions with atomic resolution. Such radiation of extreme intensity, and tunable over a wide range of wavelengths, can be accomplished using high-gain free-electron lasers (FEL). Here we present results of the first successful operation of an FEL at a wavelength of 32 nm, with ultra-short pulses (25 fs FWHM), a peak power at the Gigawatt level, and a high degree of transverse and longitudinal coherence. The experimental data are in full agreement with theory. This is the shortest wavelength achieved with an FEL to date and an important milestone towards a user facility designed for wavelengths down to 6 nm. With a peak brilliance exceeding the state-of-the-art of synchrotron radiation sources by seven orders of magnitude, this device opens a new field of experiments, and it paves the way towards sources with even shorter wavelengths, such as the Linac Coherent Light Source at Stanford, USA, and the European X-ray Free Electron Laser Facility in Hamburg, Germany.
Date: September 15, 2006
Creator: Ayvazian, V.; Baboi, N.; Bahr, J.; Balandin, V.; Beutner, B.; Brandt, A. et al.
Partner: UNT Libraries Government Documents Department

Status of the SPARC Project

Description: The SPARC project has entered its installation phase at the Frascati National Laboratories of INFN: its main goal, the promotion of an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments, is being vigorously pursued by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata-INFM-ST. In this paper we will report on the installation and test of some major components, like Ti:Sa laser system, RF gun and RF power system. Advancements in the control and beam diagnostics systems will also be reported, in particular on the emittance-meter device for beam emittance measurements in the drift space downstream the RF gun. Recent results on laser pulse shaping show the feasibility of producing 10 ps flat-top laser pulses in the UV with rise time below 1 ps. First FEL experiments have been proposed, using SASE, seeding and non-linear resonant harmonics.
Date: January 25, 2006
Creator: Alesini, D.; Bertolucci, S.; Bellaveglia, M.; Biagini, M.E.; Boni, R.; Boscolo, M. et al.
Partner: UNT Libraries Government Documents Department

Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window

Description: We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 {micro}J for individual pulses, and the average energy per pulse reached 70 {micro}J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.
Date: December 17, 2007
Creator: Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bahr, J. et al.
Partner: UNT Libraries Government Documents Department

Considerations on ODR beam-size monitoring for gamma = 1000 beams

Description: We discuss the feasibility of monitoring the beam size of {gamma} = 1000 beams with 3000 times more charge in a video frame time and with a more sensitive 12- to 16-bit camera than were used in the previous electron beam studies at 7 GeV at the Advanced Photon Source. Such a beam would be generated at Fermilab in a new facility in the coming years. Numerical integrations of our base model show beam size sensitivity for {+-} 20% level changes at 200- and 400-{micro}m base beam sizes. We also evaluated impact parameters of 5 {sigma}{sub y} and 12 {sigma}{sub y} for both 800-nm and 10-{micro}m observation wavelengths. The latter examples are related to a proposal to apply the technique to an {approx}0.98 TeV proton beam, and this study shows there are trades on photon intensity and beam size sensitivity to be considered at such gammas. In addition, we report on first results at {gamma} = 1800 on a superconducting rf linac.
Date: April 1, 2008
Creator: Lumpkin, A.H.; /Fermilab; Yao, C.-Y.; /Argonne; Chiadroni, E.; Castellano, M. et al.
Partner: UNT Libraries Government Documents Department