15 Matching Results

Search Results


Description: The {gamma} Doradus stars are a newly-discovered class of gravity-mode pulsators which lie just at or beyond the red edge of the {delta} Scuti instability strip. We present the results of calculations which predict pulsation instability of high-order g-modes with periods between 0.4 and 3 days, as observed in these stars. The pulsations are driven by the modulation of radiative flux by convection at the base of a deep envelope convection zone. Pulsation instability is predicted only for models with temperatures at the convection zone base between {approximately}200,000 and {approximately}480,000 K. The estimated shear dissipation due to turbulent viscosity within the convection zone, or in an overshoot region below the convection zone, can be comparable to or even exceed the predicted driving, and is likely to reduce the number of unstable modes, or possibly to quench the instability. Additional refinements in the pulsation modeling are required to determine the outcome. A few Doradus stars have been observed that also pulsate in {delta} Scuti-type p-modes, and at least two others have been identified as chemically peculiar. Since our calculated driving region is relatively deep, Doradus pulsations are not necessarily incompatible with surface abundance peculiarities or with {delta} Scuti p-mode pulsations driven by the H and He-ionization {kappa} effect. Such stars will provide useful observational constraints on the proposed Doradus pulsation mechanism.
Date: October 10, 2000
Creator: GUZIK, J.; KAYE, A. & AL, ET
Partner: UNT Libraries Government Documents Department

Federal Register, Volume 75, Number 217, November 10, 2010, Pages 68941-69330

Description: Daily publication of the U.S. Office of the Federal Register contains rules and regulations, proposed legislation and rule changes, and other notices, including "Presidential proclamations and Executive Orders, Federal agency documents having general applicability and legal effect, documents required to be published by act of Congress, and other Federal agency documents of public interest" (p. ii). Table of Contents starts on page iii.
Date: November 10, 2010
Creator: United States. Office of the Federal Register.
Partner: UNT Libraries Government Documents Department

Gyrokinetic Statistical Absolute Equilibrium and Turbulence

Description: A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Date: January 10, 2011
Creator: Zhu, Jian-Zhou & Hammett, Gregory W.
Partner: UNT Libraries Government Documents Department

Edge Turbulence Imaging on NSTX and Alcator C-Mod

Description: Edge turbulence images have been made using an ultra-high speed CCD camera on both NSTX and Alcator C-Mod. In both cases, the D-alpha or HeI (587.6 nm) line emission from localized deuterium or helium gas puffs was viewed along a local magnetic field line near the outer midplane. Fluctuations in this line emission reflect fluctuations in electron density and/or electron temperature through the atomic excitation rates, which can be modeled using the DEGAS-2 code. The 2-D structure of the measured turbulence can be compared with theoretical simulations based on 3-D fluid models.
Date: July 10, 2002
Creator: Zweben, S.J.; Maqueda, R.A.; Terry, J.L.; Bai, B.; Boswell, C.J.; Bush, C.E. et al.
Partner: UNT Libraries Government Documents Department