Search Results

Oxidation studies on small atom doped TI*5*SI*3*

Description: This report described the oxidation and oxidation resistance of Ti{sub 5}Si{sub 3}, along with a discussion on general material properties. Single crystal studies of Ti{sub 5}Si{sub 3}Z{sub x} are included.
Date: November 1, 1995
Partner: UNT Libraries Government Documents Department

Excited state carrier dynamics in CdS{sub x}Se{sub 1-x} semisconductor alloys as studied by ultrafast fluorescence spectroscopy

Description: This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.
Date: August 1, 1995
Creator: Gadd, S. E.
Partner: UNT Libraries Government Documents Department

Algorithms for biomagnetic source imaging with prior anatomical and physiological information

Description: This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.
Date: December 1995
Creator: Hughett, P. W.
Partner: UNT Libraries Government Documents Department

Vitrification of cesium-contaminated organic ion exchange resin

Description: Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.
Date: August 1, 1994
Creator: Sargent, T. N., Jr.
Partner: UNT Libraries Government Documents Department

An implementation of SISAL for distributed-memory architectures

Description: This thesis describes a new implementation of the implicitly parallel functional programming language SISAL, for massively parallel processor supercomputers. The Optimizing SISAL Compiler (OSC), developed at Lawrence Livermore National Laboratory, was originally designed for shared-memory multiprocessor machines and has been adapted to distributed-memory architectures. OSC has been relatively portable between shared-memory architectures, because they are architecturally similar, and OSC generates portable C code. However, distributed-memory architectures are not standardized -- each has a different programming model. Distributed-memory SISAL depends on a layer of software that provides a portable, distributed, shared-memory abstraction. This layer is provided by Split-C, a dialect of the C programming language developed at U.C. Berkeley, which has demonstrated good performance on distributed-memory architectures. Split-C provides important capabilities for good performance: support for program-specific distributed data structures, and split-phase memory operations. Distributed data structures help achieve good memory locality, while split-phase memory operations help tolerate the longer communication latencies inherent in distributed-memory architectures. The distributed-memory SISAL compiler and run-time system takes advantage of these capabilities. The results of these efforts is a compiler that runs identically on the Thinking Machines Connection Machine (CM-5), and the Meiko Computing Surface (CS-2).
Date: June 1, 1995
Creator: Beard, P.C.
Partner: UNT Libraries Government Documents Department

Three dimensional winds: A maximum cross-correlation application to elastic lidar data

Description: Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.
Date: May 1, 1996
Creator: Buttler, W.T.
Partner: UNT Libraries Government Documents Department

Mixed field dosimetry using focused and unfocused laser heating of thermoluminescent materials

Description: The incidents at the Three Mile Island and Chernobyl have triggered the need for better personnel dosimetry methods in mixed radiation fields. This thesis presents a detailed computational study of a new method for mixed radiation field dosimetry using single-element TL dosimeters with pulsed laser heating schemes. The main objective of this study was to obtain an optimum heating scheme so that the depth-dose distribution in a thick TL dosimeter could be accurately determined. The major parts of the study include: (a) heat conduction calculations for TL dosimeters with various heating schemes, (b) glow curve calculations for TL dosimeters based on a first-order kinetic model, (c) unfolding of the depth-dose distribution based on the glow curve data, and (d) estimation of shallow and deep doses from the unfolded depth-dose distribution. Two optimum heating schemes were obtained in this study. The first one was obtained for a focused laser beam, and the second one was obtained for a uniform laser beam. Both heating schemes consist of two processes: top surface heating and bottom surface heating, and each process in turn consists of a sequence of laser pulses with various heating durations and power levels. Compared to the ``true`` depth-dose distribution obtained using Monte Carlo transport code EGS4, relative errors associated with the shallow and deep doses obtained from the unfolded depth-dose distributions are 5% and 25%, respectively, for the focused laser beam, and 15% in both doses for the uniform laser beam. 74 refs., 148 figs.
Date: March 1, 1994
Creator: Han, S.
Partner: UNT Libraries Government Documents Department

Simulation of a field scale tritium tracer experiment in a fractured, weathered shale using discrete-fracture/matrix-diffusion and equivalent porous medium models

Description: Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, {alpha}{sub L}, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, {alpha}{sub T}, of 0.8 to 0.08 meters was used indicating an {alpha}{sub L}/{alpha}{sub T} ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.
Date: May 1, 1996
Creator: Stafford, P.L.
Partner: UNT Libraries Government Documents Department

New methods and materials for solid phase extraction and high performance liquid chromatography

Description: This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.
Date: April 23, 1996
Creator: Dumont, P.J.
Partner: UNT Libraries Government Documents Department

Large-eddy simulation of turbulent flow using the finite element method

Description: The equations of motion describing turbulent flows (in both the low and high Reynolds-number regimes) are well established. However, present day computers cannot meet the enormous computational requirement for numerically solving the governing equations for common engineering flows in the high Reynolds number turbulent regime. The characteristics that make turbulent, high Reynolds number flows difficult to simulate is the extreme range of time and space scales of motion. Most current engineering calculations are performed using semi-empirical equations, developed in terms of the flow mean (average) properties. These turbulence{open_quote} models{close_quote} (semi-empirical/analytical approximations) do not explicitly account for the eddy structures and thus, the temporal and spatial flow fluctuations are not resolved. In these averaging approaches, it is necessary to approximate all the turbulent structures using semi-empirical relations, and as a result, the turbulence models must be tailored for specific flow conditions and geometries with parameters obtained (usually) from physical experiments. The motivation for this research is the development of a finite element turbulence modeling approach which will ultimately be used to predict the wind flow around buildings. Accurate turbulence models of building flow are needed to predict the dispersion of airborne pollutants. The building flow turbulence models used today are not capable of predicting the three-dimensional separating and reattaching flows without the manipulation of many empirical parameters. These empirical parameters must be set by experimental data and they may vary unpredictably with building geometry, building orientation, and upstream flow conditions.
Date: February 15, 1995
Creator: McCallen, R. C.
Partner: UNT Libraries Government Documents Department

A study of the differences in respirator fit factor values between years and masks

Description: The work described in this report was carried out at a national laboratory of the Department of Energy, during the time that the author was engaged in a Department of Energy Industrial Hygiene Graduate Fellowship. The national laboratory had a respiratory protection program with approximately 50 employees participating. The program was in place to protect employees from over-exposure to airborne contaminants while engineering and work practice controls were being installed and implemented. It was also in place to protect workers in situations where engineering and work control practices were not feasible, such as during maintenance and repair work, as well as in situations where engineering and work practice controls were not enough to lower the exposure to or below the Permissible Exposure Limit (PEL) as set by the Occupational Safety and Health Association (OSHA) as an eight-hour time weighted average (TWA) or an excursion limit. Respirators were also used for emergencies by the emergency response team.
Date: August 15, 1995
Creator: Longo, A.
Partner: UNT Libraries Government Documents Department

Characterization and refinement of carbide coating formation rates and dissolution kinetics in the Ta-C system

Description: The interaction between carbide coating formation rates and dissolution kinetics in the tantalum-carbon system was investigated. The research was driven by the need to characterize carbide coating formation rates. The characterization of the carbide coating formation rates was required to engineer an optimum processing scheme for the fabrication of the ultracorrosion-resistant composite, carbon-saturated tantalum. A packed-bed carburization process was successfully engineered and employed. The packed-bed carburization process produced consistent, predictable, and repeatable carbide coatings. A digital imaging analysis measurement process for accurate and consistent measurement of carbide coating thicknesses was developed. A process for removing the chemically stable and extremely hard tantalum-carbide coatings was also developed in this work.
Date: October 1, 1996
Creator: Rodriguez, P.J.
Partner: UNT Libraries Government Documents Department

Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

Description: In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.
Date: February 1, 1999
Creator: Robertson, Janeen Denise
Partner: UNT Libraries Government Documents Department

NMR studies of DNA oligomers and their interactions with minor groove binding ligands

Description: The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.
Date: May 1, 1996
Creator: Fagan, P.A.
Partner: UNT Libraries Government Documents Department

Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

Description: X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S{sub 2} state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S{sub 2} state with the g{approx}4 electron paramagnetic resonance (EPR) signal (S{sub 2}-g4 state) was compared with that in the S{sub 2} state with multiline signal (S{sub 2}-MLS state) and the S{sub 1} state. The S{sub 2}-g4 state has a higher XAS inflection point energy than that of the S{sub 1} state, indicating the oxidation of Mn in the advance from the S{sub 1} to the S{sub 2}-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S{sub 2}-g4 state is different from that in the S{sub 2}-MLS or the S{sub 1} state. In the S{sub 2}-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 {angstrom} and 2.85 {angstrom}. Very little distance disorder exists in the second shell of the S{sub 1} or S{sub 2}-MLS states. The third shell of the S{sub 2}-g4 state at about 3.3 {angstrom} also contains increased heterogeneity relative to that of the S{sub 2}-MLS or the S{sub 1} state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct {open_quotes}pure{close_quotes} S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S{sub 1} {yields} S{sub 2} transition.
Date: November 1, 1994
Creator: Liang, W.
Partner: UNT Libraries Government Documents Department

Nonlinear optical properties of atomic vapor and semiconductors

Description: This thesis contains the study of highly forbidden resonant second harmonic generation (SHG) in atomic potassium vapor using tunable picosecond pulses. Various output characteristics of vapor SHG have been investigated including the input intensity dependence, potassium vapor density dependence, buffer gas pressure dependence, and spatial profile. Recently, the discovery of new nonlinear optical crystals such as barium borate ({beta}-BaB{sub 2}O{sub 4}, BBO) and lithium borate (LiB{sub 3}O{sub 5}, LBO) has greatly improved the performance of a tunable coherent optical devices based on optical parametric generation and amplification. In the second part of this thesis, a homebuilt picosecond optical parametric generator/amplifier (OPG/OPA) system is described in detail, including its construction details and output characteristics. This laser device has found many useful applications in spectroscopic studies including surface nonlinear optical spectroscopy via sum-frequency generation (SFG). The last part of this thesis reports studies on multiphoton-excited photoluminescence from porous silicon and GaN. Multiphoton excitation and photoluminescence can give numerous complementary information about semiconductors not obtainable with one-photon, above-bandgap excitation.
Date: June 1, 1997
Creator: Kim, D.
Partner: UNT Libraries Government Documents Department

Multigrid methods with applications to reservoir simulation

Description: Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.
Date: May 1, 1994
Creator: Xiao, Shengyou
Partner: UNT Libraries Government Documents Department

Low temperature carrier transport properties in isotopically controlled germanium

Description: Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled {sup 75}Ge and {sup 70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [{sup 74}Ge]/[{sup 70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.
Date: December 1994
Creator: Itoh, K.
Partner: UNT Libraries Government Documents Department

The photosynthetic acclimation of Lolium perenne in response to three years growth in a free-air CO{sub 2} enrichment (FACE) system

Description: Pure stands of Ryegrass were in their third year of growth in the field, exposed to either ambient (355 {mu}mol mol{sup -1}), or elevated (600 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration. A Free-Air CO{sub 2} Enrichment (FACE) system was used to maintain the elevated CO{sub 2} concentration whilst limiting experimental constraints on the field conditions. The theoretically predicted increase in the net rates of CO{sub 2} uptake per unit leaf area (A {mu}mol mol{sup -1}) as a consequence, primarily, of the suppression of photorespiration by CO{sub 2} a competitive inhibitor of RubP oxygenation by Rubisco, was observed for the Lolium perenne studied. Also observed was a general decline in leaf evapotranspiration (E) consistent with observations of increased water use efficiency of crops grown in elevated CO{sub 2}. Enhancement of leaf A in the FACE grown L. perenne ranged from 26.5 1 % to 44.95% over the course of a diurnal set of measurements. Whilst reductions in leaf E reached a maximum of 16.61% over the same diurnal course of-measurements. The increase in A was reconciled with an absence of the commonly observed decline in V{sub c}{sub max} as a measure of the maximum in vivo carboxylation capacity of the primary carboxylasing enzyme Rubisco and J{sub max} a measure of the maximum rate of electron transport. The manipulation of the source sink balance of the crop, stage of canopy regrowth or height in the canopy had no effect on the observation of a lack of response. The findings of this study will be interpreted with respect to the long term implications of C{sub 3} crops being able to adapt physiologically to maximize the potential benefits conferred by growth in elevated CO{sub 2}.
Date: August 1, 1996
Creator: Hymus, G.J.
Partner: UNT Libraries Government Documents Department

Crenulative Turbulence in a Converging Nonhomogeneous Material

Description: Crenulative turbulence is a nonlinear extension of the Bell-Plesset instability, usually observed in a converging system in which there is a nonhomogeneous response of stress to strain and/or strain rate. In general, crenelation occurs in any circumstance in which the mean flow streamlines converge the material more strongly than the compressibility can accommodate. Elements of the material slip past each other, resulting in local fluctuations in velocity from that of the mean flow, producing a type of turbulence that is more kinematic than inertial. For a homogeneous material, crenelation occurs at the atomic or molecular scale. With nonhomogeneous stress response at larger scales, the crenulative process can also occur at those larger scales. The results are manifested by a decrease in the rate of dissipation to heat, and by the configurationally-irreversible mixing of nonhomogeneities across any mean-flow-transported interface. We obtain a mathematical description of the crenulative process by means of Reynolds decomposition of the appropriate variables, and the derivation of transport equations for the second-order moments that arise in the mean-flow momentum and energy equations. The theory is illustrated by application to the spherical convergence of an incompressible fluid with nonhomogeneous distribution of kinematic viscosity.
Date: January 1, 1999
Creator: Romero, C.A.
Partner: UNT Libraries Government Documents Department

Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

Description: The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.
Date: December 31, 2002
Creator: Classen, Nathan Robert
Partner: UNT Libraries Government Documents Department

Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

Description: The study of the reactions between heavy ions and {sup 208}Pb, {sup 209}Bi, {sup 238}U, and {sup 248} Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the {sup 238}U({sup 18}O,xn){sup 256-x}Fm, {sup 238}U({sup 22}Ne,xn){sup 260-x}No, and {sup 248}Cm({sup 15}N,xn){sup 263-x}Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The {sup 208}Pb({sup 48}Ca,xn){sup 256-x}No, {sup 208}Pb({sup 50}Ti,xn){sup 258-x}Rf, {sup 208}Pb({sup 51}V,xn){sup 259-x}Db, {sup 209}Bi({sup 50}Ti,xn){sup 259-x}Db, and {sup 209}Bi({sup 51}V,xn){sup 260-x}Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics.
Date: May 24, 2002
Creator: Patin, Joshua B.
Partner: UNT Libraries Government Documents Department

Laser: a Tool for Optimization and Enhancement of Analytical Methods

Description: In this work, we use lasers to enhance possibilities of laser desorption methods and to optimize coating procedure for capillary electrophoresis (CE). We use several different instrumental arrangements to characterize matrix-assisted laser desorption (MALD) at atmospheric pressure and in vacuum. In imaging mode, 488-nm argon-ion laser beam is deflected by two acousto-optic deflectors to scan plumes desorbed at atmospheric pressure via absorption. All absorbing species, including neutral molecules, are monitored. Interesting features, e.g. differences between the initial plume and subsequent plumes desorbed from the same spot, or the formation of two plumes from one laser shot are observed. Total plume absorbance can be correlated with the acoustic signal generated by the desorption event. A model equation for the plume velocity as a function of time is proposed. Alternatively, the use of a static laser beam for observation enables reliable determination of plume velocities even when they are very high. Static scattering detection reveals negative influence of particle spallation on MS signal. Ion formation during MALD was monitored using 193-nm light to photodissociate a portion of insulin ion plume. These results define the optimal conditions for desorbing analytes from matrices, as opposed to achieving a compromise between efficient desorption and efficient ionization as is practiced in mass spectrometry. In CE experiment, we examined changes in a poly(ethylene oxide) (PEO) coating by continuously monitoring the electroosmotic flow (EOF) in a fused-silica capillary during electrophoresis. An imaging CCD camera was used to follow the motion of a fluorescent neutral marker zone along the length of the capillary excited by 488-nm Ar-ion laser. The PEO coating was shown to reduce the velocity of EOF by more than an order of magnitude compared to a bare capillary at pH 7.0. The coating protocol was important, especially at an intermediate pH of 7.7. The increase of ...
Date: January 1, 1997
Creator: Preisler, Jan
Partner: UNT Libraries Government Documents Department

Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

Description: Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.
Date: August 5, 2003
Creator: Zou, Lijuan
Partner: UNT Libraries Government Documents Department