128,377 Matching Results

Search Results

Precision solid liner experiments on Pegasus II

Description: Pulsed power systems have been used in the past to drive solid liner implosions for a variety of applications. In combination with a variety of target configurations, solid liner drivers can be used to compress working fluids, produce shock waves, and study material properties in convergent geometry. The utility of such a driver depends in part on how well-characterized the drive conditions are. This, in part, requires a pulsed power system with a well-characterized current wave form and well understood electrical parameters. At Los Alamos, the authors have developed a capacitively driven, inductive store pulsed power machine, Pegasus, which meets these needs. They have also developed an extensive suite of diagnostics which are capable of characterizing the performance of the system and of the imploding liners. Pegasus consists of a 4.3 MJ capacitor bank, with a capacitance of 850 {micro}f fired with a typical initial bank voltage of 90 kV or less. The bank resistance is about 0.5 m{Omega}, and bank plus power flow channel has a total inductance of about 24 nH. In this paper the authors consider the theory and modeling of the first precision solid liner driver fielded on the LANL Pegasus pulsed power facility.
Date: September 1, 1995
Creator: Bowers, R.L.; Brownell, J.H. & Lee, H.
Partner: UNT Libraries Government Documents Department

Criticality benchmark results for the ENDF60 library with MCNP{trademark}

Description: The continuous-energy neutron data library ENDF60, for use with the Monte Carlo N-Particle radiation transport code MCNP4A, was released in the fall of 1994. The ENDF60 library is comprised of 124 nuclide data files based on the ENDF/B-VI (B-VI) evaluations through Release 2. Fifty-two percent of these B-VI evaluations are translations from ENDF/B-V (B-V). The remaining forty-eight percent are new evaluations which have sometimes changed significantly. Among these changes are greatly increased use of isotopic evaluations, more extensive resonance-parameter evaluations, and energy-angle correlated distributions for secondary particles. In particular, the upper energy limit for the resolved resonance region of {sup 235}U, {sup 238}U and {sup 239}Pu has been extended from 0.082, 4.0, and 0.301 keV to 2..25, 10.0, and 2.5 keV respectively. As regulatory oversight has advanced and performing critical experiments has become more difficult, there has been an increased reliance on computational methods. For the criticality safety community, the performance of the combined transport code and data library is of interest. The purpose of this abstract is to provide benchmarking results to aid the user in determining the best data library for their application.
Date: July 1, 1995
Creator: Keen, N.D.; Frankle, S.C. & MacFarlane, R.E.
Partner: UNT Libraries Government Documents Department

Development of small, fast reactor core designs using lead-based coolant.

Description: A variety of small (100 MWe) fast reactor core designs are developed, these include compact configurations, long-lived (15-year fuel lifetime) cores, and derated, natural circulation designs. Trade studies are described which identify key core design issues for lead-based coolant systems. Performance parameters and reactivity feedback coefficients are compared for lead-bismuth eutectic (LBE) and sodium-cooled cores of consistent design. The results of these studies indicate that the superior neutron reflection capability of lead alloys reduces the enrichment and burnup swing compared to conventional sodium-cooled systems; however, the discharge fluence is significantly increased. The size requirement for long-lived systems is constrained by reactivity loss considerations, not fuel burnup or fluence limits. The derated lead-alloy cooled natural circulation cores require a core volume roughly eight times greater than conventional compact systems. In general, reactivity coefficients important for passive safety performance are less favorable for the larger, derated configurations.
Date: June 11, 1999
Creator: Cahalan, J. E.; Hill, R. N.; Khalil, H. S. & Wade, D. C.
Partner: UNT Libraries Government Documents Department

Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

Description: Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.
Date: August 10, 1999
Creator: Eberhardt, J. J.; Rote, D. M.; Saricks, C. L. & Stodolsky, F.
Partner: UNT Libraries Government Documents Department

Comparison of predicted far-field temperatures for discrete and smeared heat sources

Description: A fundamental concern in the design of the potential repository at Yucca Mountain. Nevada is the response of the host rock to the emplacement of heat-generating waste. The thermal perturbation of the rock mass has implications regarding the structural, hydrologic. and geochemical performance of the potential repository. The phenomenological coupling of many of these performance aspects makes repository thermal modeling a difficult task. For many of the more complex, coupled models, it is often necessary to reduce the geometry of the potential repository to a smeared heat-source approximation. Such simplifications have impacts on induced thermal profiles that in turn may influence other predicted responses through one- or two-way thermal couplings. The effect of waste employment layout on host-rock thermal was chosen as the primary emphasis of this study. Using a consistent set of modeling and input assumptions, far-field thermal response predictions made for discrete-source as well as plate source approximations of the repository geometry. Input values used in the simulations are consistent with a design-basis a real power density (APD) of 80 kW/acre as would be achieved assuming a 2010 emplacement start date, a levelized receipt schedule, and a limitation on available area as published in previous design studies. It was found that edge effects resulting from general repository layout have a significant influence on the shapes and extents of isothermal profiles, and should be accounted for in far-field modeling efforts.
Date: December 16, 1992
Creator: Ryder, E.E.
Partner: UNT Libraries Government Documents Department

Preliminary analysis of core capsule x-ray spectroscopy and image results for medium-to-high growth factor implosions

Description: Recent capsule implosions using indirect drive on NOVA have probed core and near-core capsule T{sub e}, {rho} and mix structure using non-trivial pulse shapes (i.e. with a foot). These experiments have been performed using smooth as well as artificially roughened capsules. They have been performed using basically 3 non-trivial pulse-shapes with 3 different types of capsules with correspondingly different growth regimes for Rayleigh-Taylor instabilities. These experiments have employed time-dependent spectroscopy, gated imaging and absolutely calibrated time-integrated imaging as x-ray diagnostics. The authors compare nominal and {open_quotes}modified{close_quotes} 1D calculations with the spectroscopic and time-integrated image results. They find that the core T{sub e} is less than calculated (not surprising), but also that the T{sub e} of the inner pusher is substantially higher (at least 20%) than predicted, with perhaps some enhanced mix of the PVA layer towards the core.
Date: September 1, 1995
Creator: Pollak, G.; Delamater, N. & Landen, N.
Partner: UNT Libraries Government Documents Department

Imprinted spiral structures as neutron polarizers.

Description: Neutron diffraction from magnetic spiral structures is governed by strong selection rules for the polarization of the outgoing beam. When the sample is entirely of one chirality--for instance a right handed spiral--the neutrons diffracted by some Bragg reflections are fully polarized. While the scattering theory has been formulated long ago, attempts to controllably modify the population of left handed and right handed spiral domains in natural magnetic structures (which for instance occur in some rare earth metals) have been largely unsuccessful. In contrast, we have been able to imprint helical magnetic structures in La/Fe multilayers (each layer approximately 30 {angstrom} thick) simply by rotating the growing sample in a weak external field (30e). A first estimate is given of the efficiency of these multilayers as polarizers of neutron beams.
Date: October 7, 1998
Creator: Lohstroh, W.
Partner: UNT Libraries Government Documents Department

Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)

Description: Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs were defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.
Date: August 30, 1999
Creator: BABA,T.; ISHIGURO,K.; ISHIHARA,Y.; SAWADA,A.; UMEKI,H.; WAKASUGI,K. et al.
Partner: UNT Libraries Government Documents Department

Hybrid options for light-duty vehicles.

Description: Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.
Date: July 19, 1999
Creator: An, F., Stodolsky, F. & Santini, D.
Partner: UNT Libraries Government Documents Department

Determination of coupled-lattice properties using turn-by-turn data

Description: A formalism for extracting coupled betatron parameters from multiturn, shock excited, beam position monitor data is described. The most important results are nonperturbative in that they do not rely on the underlying ideal lattice model. Except for damping, which is assumed to be exponential and small enough to be removed empirically, the description is symplectic. As well as simplifying the description, this leads to self-consistency checks that are applied to the data. The most important of these is a {open_quotes}magic ratio{close_quotes} of Fourier coefficients that is required to be a lattice invariant, the same at every beam position monitor. All formulas are applied to both real and simulated data. The real data was acquired June, 1992 at LEP as part of decoupling studies, using the LEP beam orbit measurement system. Simulated data, obtained by numerical tracking (TEAPOT) in the same (except for unknown errors) lattice, agrees well with real data when subjected to identical analysis. For both datasets, deviations between extracted and design parameters and deviations from self-consistency can be accounted for by noise and signal processing limitations. This investigation demonstrates that the LEP beam position system yields reliable local coupling measurements. It can be conservatively assumed that systems of similar design at the SSC and LHC will provide the measurements needed for local decoupling.
Date: December 1, 1992
Creator: Bourianoff, G.; Hunt, S. & Mathieson, D.
Partner: UNT Libraries Government Documents Department

Residual Stress Predictions in Polycrystalline Alumina

Description: Microstructure-level residual stresses arise in polycrystalline ceramics during processing as a result of thermal expansion anisotropy and crystallographic disorientation across the grain boundaries. Depending upon the grain size, the magnitude of these stresses can be sufficiently high to cause spontaneous microcracking during the processing of these materials. They are also likely to affect where cracks initiate and propagate under macroscopic loading. The magnitudes of residual stresses in untextured and textured alumina samples were predicted using object oriented finite (OOF) element analysis and experimentally determined grain orientations. The crystallographic orientations were obtained by electron-backscattered diffraction (EBSD). The residual stresses were lower and the stress distributions were narrower in the textured samples compared to those in the untextured samples. Crack initiation and propagation were also simulated using the Griffith fracture criterion. The grain boundary to surface energy ratios required for computations were estimated using AFM groove measurements.
Date: December 13, 1999
Creator: VEDULA,VENKATA R.; GLASS,S. JILL; SAYLOR,DAVID M.; ROHRER,GREGORY S.; CARTER,W. CRAIG & LANGER,STEPHEN A.
Partner: UNT Libraries Government Documents Department

Laboratory studies of radionuclide migration in tuff

Description: The movement of selected radionuclides has been observed in crushed tuff, intact tuff, and fractured tuff columns. Retardation factors and dispersivities were determined from the elution profiles. Retardation factors have been compared with those predicted on the basis of batch sorption studies. This comparison forms a basis for either validating distribution coefficients or providing evidence of speciation, including colloid formation. Dispersivities measured as a function of velocity provide a means of determining the effect of sorption kinetics or mass transfer on radionuclide migration. Dispersion is also being studied in the context of scaling symmetry to develop a basis for extrapolating from the laboratory scale to the field. 21 refs., 6 figs., 2 tabs.
Date: October 1, 1989
Creator: Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Thompson, J.L. & Triay, I.R.
Partner: UNT Libraries Government Documents Department

Development of a high-power lithium-ion battery.

Description: Safety is a key concern for a high-power energy storage system such as will be required in a hybrid vehicle. Present lithium-ion technology, which uses a carbon/graphite negative electrode, lacks inherent safety for two main reasons: (1) carbon/graphite intercalates lithium at near lithium potential, and (2) there is no end-of-charge indicator in the voltage profile that can signal the onset of catastrophic oxygen evolution from the cathode (LiCoO{sub 2}). Our approach to solving these safety/life problems is to replace the graphite/carbon negative electrode with an electrode that exhibits stronger two-phase behavior further away from lithium potential, such as Li{sub 4}Ti{sub 5}O{sub 12}. Cycle-life and pulse-power capability data are presented in accordance with the Partnership for a New Generation of Vehicles (PNGV) test procedures, as well as a full-scale design based on a spreadsheet model.
Date: September 2, 1998
Creator: Jansen, A. N.
Partner: UNT Libraries Government Documents Department

Thermodynamic and nonstoichiometric behavior of the GdBa{sub 2}Cu{sub 3}O{sub x} system.

Description: Electromotive force (EMF) measurements of oxygen fugacities as a function of stoichiometry have been made on the GdBa{sub 2}Cu{sub 3}O{sub x} system in the temperature range {approximately}400-600 C by means of an oxygen titration technique with an yttria-stabilized zirconia electrolyte. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. The shape of the 400 C isotherms as a function of oxygen stoichiometry for the Gd and Nd cuprate systems suggests the presence of miscibility gaps at values of x that are higher than those in the YBa{sub 2}Cu{sub 3}O{sub x} system. For a given oxygen stoichiometry, oxygen partial pressures above Gd-123 and Nd-123 cuprate systems are higher (above x = 6.5) than that for the Y-123 system. A thermodynamic assessment and intercomparison of our partial pressure measurements with the results of related measurements will be presented.
Date: September 29, 1998
Creator: Tetenbaum, M.
Partner: UNT Libraries Government Documents Department

BWR drywell behavior under steam blowdown.

Description: Historically, thermal hydraulics analyses on Large Break Loss of Coolant Accidents (LOCA) have been focused on the transients within the reactor or steam generator. Few have studied the effects of steam blowdown on the containment building. This paper discusses some theoretical issues as well as presenting numerical and experimental results of the blowdown tests performed at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA).
Date: May 8, 1998
Creator: NguyenLe, Q.
Partner: UNT Libraries Government Documents Department

Techniques for inelastic x-ray scattering with {mu}eV resolution.

Description: We introduce a novel type of spectrometer that provides a {micro}eV bandpass together with a tunability over a few meV. The technique relies on nuclear resonant scattering (Moessbauer effect) of synchrotrons radiation at the 14.4-keV resonance of {sup 57}Fe. Energy tuning is achieved by the Doppler effect in high speed rotary motion. The resonantly scattered monochromatic radiation is extracted by a polarization filtering technique or by spatial separation due to the ''nuclear lighthouse effect''.
Date: October 23, 1998
Creator: Rohlsberger, R.
Partner: UNT Libraries Government Documents Department

Lithium-endohedral C{sub 60} complexes.

Description: High capacity, reversible, lithium intercalated carbon anodes have been prepared, 855 m.Ah/g, which exceed the capacity for stage 1 lithium intercalated carbon anodes, 372 mAh/g. Since there is very little hydrogen content in the high capacity anode, the fullerene C{sub 60} lattice is used to investigate the nature of lithium ion bonding and spacing between lithiums in endohedral lithium complexes of C{sub 60}. Three lithium-endohedral complexes have been investigated using ab initio molecular orbital calculations involving 2,3 and 5 lithium. The calculated results suggest that lithium cluster formation may be important for achieving the high capacity lithium carbon anodes.
Date: May 4, 1998
Creator: Scanlon, L. G.
Partner: UNT Libraries Government Documents Department

Development of practical damage-mapping and inspection systems

Description: We have developed and are continuing to refine semi-automated technology for the detection and inspection of surface and bulk defects and damage in large laser optics Different manifestations of the DAMOCLES system (Damage and Artifact Mapping Of Coherent-Laser-Exposed Substrates) provide an effective and economical means of being able to detect, map and characterize surface and bulk defects which may become precursors of massive damage in optics when subjected to high-fluence laser irradiation Subsequent morphology and evolution of damage due to laser irradiation can be tracked efficiently The strength of the Damocles system is that it allows for immediate visual observation of defects in an entire optic, which can range up to l-meter dimensions, while also being able to provide digital map and magnified images of the defects with resolutions better than 5 ┬Ám.
Date: August 19, 1998
Creator: Rainer, F.
Partner: UNT Libraries Government Documents Department

Using the DOE Knowledge Base for Special Event Analysis

Description: The DOE Knowledge Base is a library of detailed information whose purpose is to support the United States National Data Center (USNDC) in its mission to monitor compliance with the Comprehensive Test Ban Treaty (CTBT). One of the important tasks which the USNDC must accomplish is to periodically perform detailed analysis of events of high interest, so-called "Special Events", to provide the national authority with information needed to make policy decisions. In this paper we investigate some possible uses of the Knowledge Base for Special Event Analysis (SEA), and make recommendations for improving Knowledge Base support for SEA. To analyze an event in detail, there are two basic types of data which must be used sensor-derived data (wave- forms, arrivals, events, etc.) and regiohalized contextual data (known sources, geological characteristics, etc.). Cur- rently there is no single package which can provide full access to both types of data, so for our study we use a separate package for each MatSeis, the Sandia Labs-developed MATLAB-based seismic analysis package, for wave- form data analysis, and ArcView, an ESRI product, for contextual data analysis. Both packages are well-suited to pro- totyping because they provide a rich set of currently available functionality and yet are also flexible and easily extensible, . Using these tools and Phase I Knowledge Base data sets, we show how the Knowledge Base can improve both the speed and the quality of SEA. Empirically-derived interpolated correction information can be accessed to improve both location estimates and associated error estimates. This information can in turn be used to identi~ any known nearby sources (e.g. mines, volcanos), which may then trigger specialized processing of the sensor data. Based on the location estimate, preferred magnitude formulas and discriminants can be retrieved, and any known blockages can be identified to prevent miscalculations. Relevant historic ...
Date: October 20, 1998
Creator: Armstrong, H.M.; Harris, J.M. & Young, C.J.
Partner: UNT Libraries Government Documents Department

Laser-generated metallic hydrogen

Description: Hydrogen reaches the minimum conductivity of a metal at 140 GPa (1.4 Mbar) and 3000 K. These conditions were achieved using a two-stage light-gas gun. The authors have investigated computationally the use of a laser-heated hohlraum to shock compress hydrogen to these conditions in samples sufficiently thin that the metallic fluid might be quenched metastably on release of dynamic pressure. A configuration was found such that the duration of maximum pressure is sufficiently long that the hydrogen film cools by thermal conduction before pressure is released.
Date: August 27, 1999
Creator: Nellis, W J & Pollaine, S M
Partner: UNT Libraries Government Documents Department

Uncertainty Propagation in Calibration of Parallel Kinematic Machines

Description: Over the last decade, multi-axis machine tools and robots based on parallel kinematic mechanisms (PKMs) have been developed and marketed worldwide. Positional accuracy in these machines is controlled by accurate knowledge of the kinematic parameters which consists of the joint center locations and distances between joint pairs. Since these machines tend to be rather large in size, the kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. Work recently completed by the University of Florida and Sandia National Laboratories has yielded a method for determining all of the kinematic parameters of an assembled parallel kinematic device. This paper contains a brief synopsis of the calibration method created, an error budget, an uncertainty analysis for the recovered kinematic parameters and the propagation of these uncertainties to the tool tip.
Date: November 2, 1999
Creator: JOKIEL JR.,BERNHARD & ZIERGERT,JOHN C.
Partner: UNT Libraries Government Documents Department