1,472 Matching Results

Search Results

Small-angle and surface scattering from porous and fractal materials.

Description: We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.
Date: September 18, 1998
Creator: Sinha, S. K.
Partner: UNT Libraries Government Documents Department

Two-body bound states & the Bethe-Salpeter equation

Description: The Bethe-Salpeter formalism is used to study two-body bound states within a scalar theory: two scalar fields interacting via the exchange of a third massless scalar field. The Schwinger-Dyson equation is derived using functional and diagrammatic techniques, and the Bethe-Salpeter equation is obtained in an analogous way, showing it to be a two-particle generalization of the Schwinger-Dyson equation. The authors also present a numerical method for solving the Bethe-Salpeter equation without three-dimensional reduction. The ground and first excited state masses and wavefunctions are computed within the ladder approximation and space-like form factors are calculated.
Date: January 18, 1995
Creator: Pichowsky, M.; Kennedy, M. & Strickland, M.
Partner: UNT Libraries Government Documents Department

Chemometric Analysis of Two Dimensional Decay Data: Application to {sup 17}O NMR Relaxation Matrices

Description: The use of {sup 17}O NMR spectroscopy as a tool to investigate aging in polymer systems has recently been demonstrated. Because the natural abundance of {sup 17}O is extremely low (0.037%), the use of labeled {sup 17}O{sub 2} during the oxidation of polymers produces {sup 17}O NMR spectra whose signals arise entirely from the degradation species (i.e. signals from the bulk or unaged material are not observed). This selective isotopic labeling eliminates the impact of interference from the unaged material, cause (1) above. As discussed by Alam et al. spectral overlap between different degradation species as well as errors in quantification remains a major difficulty in {sup 17}O NMR spectroscopy. As a demonstration of the DECRA and CTBSA methods, relaxation matrices obtained from {sup 17}O NMR for model alcohol systems are evaluated. The benefits and limitations of these newly developed chemometric techniques are discussed.
Date: March 18, 1999
Creator: Alam, M.K. & Alam, T.M.
Partner: UNT Libraries Government Documents Department

A technique for determining the Poisson`s ratio of thin films

Description: The theory and experimental approach for a new technique used to determine the Poisson`s ratio of thin films are presented. The method involves taking the ratio of curvatures of cantilever beams and plates micromachined out of the film of interest. Curvature is induced by a through-thickness variation in residual stress, or by depositing a thin film under residual stress onto the beams and plates. This approach is made practical by the fact that the two curvatures air, the only required experimental parameters, and small calibration errors cancel when the ratio is taken. To confirm the accuracy of the technique, it was tested on a 2.5 {mu}m thick film of single crystal silicon. Micromachined beams 1 mm long by 100 {mu} wide and plates 700 {mu}m by 700 {mu}m were coated with 35 nm of gold and the curvatures were measured with a scanning optical profilometer. For the orientation tested ([100] film normal, [011] beam axis, [0{bar 1}1] contraction direction) silicon`s Poisson`s ratio is 0.064, and the measured result was 0.066 {+-} 0.043. The uncertainty in this technique is due primarily to variation in the measured curvatures, and should range from {+-} 0.02 to 0.04 with proper measurement technique.
Date: April 18, 1996
Creator: Krulevitch, P.
Partner: UNT Libraries Government Documents Department

Design and performance of a laser guide star system for the Keck II telescope

Description: A laser system to generate sodium-layer guide stars has been designed, built and delivered to the Keck Observatory in Hawaii. The system uses frequency doubled YAG lasers to pump liquid dye lasers and produces 20 W of average power. The design and performance results of this laser system are presented.
Date: May 18, 1998
Creator: Friedman, H. W., LLNL
Partner: UNT Libraries Government Documents Department

Stable and Vibrational Octupole Modes in Mo, Xe, Ba, La, Ce and Nd

Description: Evidence is presented for stable octupole deformation in neutron-rich nuclei, bounded by Z = 54-58 and N = 85-92. To either side of this region negative parity bands built on more vibrational type octupole modes are observed in {sup 140}Ba and {sup 152,154}Nd. The largest stable octupole deformation ({beta}{sub s} {approximately} 0.1) is found in {sup 144}Ba{sub as}. The theoretically predicted quenching ({beta}{sub s} {approximately} 0) of stable octupole deformation at higher spins is found in {sup 140}Ba. There is good agreement between theory and experiment for the strongly varying electric dipole moments as a function of mass for {sup 142-141}Ba. In odd-A {sup 142}Ba and odd-Z {sup 140}La, we observe parity doublets, two pairs of positive and negative parity bands with opposite spins. In {sup 145}La a strong coupled ground band with symmetric shape coexists with the asymmetric octupole shape which stabilizes above about spin 19/2. In {sup 145,147}La a strong reduction in E2 strength around 25/2 from band crossing is observed. The isotope {sup 109}Mo was identified and a new region of stable uctpole deformation is identified in {sup 107,108}Mo centered around N = 64-66 as earlier predicted. This is the first case of stable uctpole deformation involving only one pair of orbitals.
Date: May 18, 1998
Creator: Gore, P.M.; Hamilton, J.H.; Hwang, J.K.; Jones, E.F.; Peker, L.K.; Ramayya, A.V. et al.
Partner: UNT Libraries Government Documents Department

3-D electromagnetic modeling of wakefields in accelerator components

Description: We discuss the use of 3-D finite-difference time-domain (FDTD) electromagnetic codes for modeling accelerator components. Computational modeling of cylindrically symmetric structures such as induction accelerator cells has been very successful in predicting the wake potential and wake impedances of these structures, but full 3-D modeling of complex structures has been limited due to substantial computer resources required for a full 3-D model. New massively parallel 3-D time domain electromagnetic codes now under development using conforming unstructured meshes allow a substantial increase in the geometric fidelity of the structures being modeled. Development of these new codes are discussed in context of applicability to accelerator problems. Various 3-D structures are tested with an existing cubical cell FDTD code and wake impedances compared with simple analytic models for the structures; results will be used as benchmarks for testing the new time time domain codes. Structures under consideration include a stripline beam position monitor as well as circular and elliptical apertures in circular waveguides. Excellent agreement for monopole and dipole impedances with models were found for these structures below the cutoff frequency of the beam line.
Date: September 18, 1996
Creator: Poole, B.R.; Caporaso, G.J.; Ng, Wang C.; Shang, C.C. & Steich, D.
Partner: UNT Libraries Government Documents Department

Modeling the interacting detonation fronts observed by low energy radiography

Description: We have completed a series of experiments in which we made radiographs of interacting detonation fronts in a high explosive. Although the fronts and interactions were observed, the experimental data were insufficient to distinguish between two computer models which we employed to simulate the experiments.
Date: September 18, 1998
Creator: Aufderheide, M; Egan, P O; Morgan, D L & Vantine, H C
Partner: UNT Libraries Government Documents Department

REFLECTIONS ON MY CONTRIBUTIONS TO PARTICLE PHYSICS AND RECENT EXPERIMENTAL RESULTS FROM RHIC.

Description: My talk today will be composed of two parts. The first part will consist of a summary of some of my experimental contributions over the years. It will not be exhaustive but will highlight the findings that had relevance to the progress of our understanding of particle physics as it has evolved over the years. This section will be divided into three periods: Early, Intermediate and Late, with an in depth discussion of a few of the more significant results. The second part will consist of a discussion of the recently completed Relativistic Heavy Ion Collider (RHIC) machine at Brookhaven National Laboratory (BNL). This will encompass the parameters of the accelerator and some of the interesting and exciting early experimental results emanating from this machine.
Date: January 18, 2002
Creator: SAMIOS,N.P.
Partner: UNT Libraries Government Documents Department

Effects of the amorphous oxide intergranular layer structure and bonding on the fracture toughness of a high purity silicon nitride

Description: The microstructural evolution and structural characteristics and transitions in the thin grain-boundary oxide films in a silicon nitride ceramic, specifically between two adjacent grains and not the triple junctions, are investigated to find their effect on the macroscopic fracture properties. It is found that by heat treating a model Si3N4-2wt percent Y2O3 ceramic for {approx}200 hr at 1400 degrees C in air, the fracture toughness can be increased by {approx}100 percent, coincident with a change in fracture mechanism from transgranular to intergranular.
Date: November 18, 2002
Creator: Ziegler, A.; Kisielowski, C.; Hoffmann, M.J. & Ritchie, R.O.
Partner: UNT Libraries Government Documents Department

Fuel design for the U.S. accelerator driven transmutation system.

Description: The U.S. concept for actinide transmutation is currently envisioned as a system to destroy plutonium as well as minor actinides in a single or two tier system. In order to maximize the actinide destruction rate, an inert matrix fuel is used. The effectiveness of transmutation in reducing the actinide inventory is linked to the development of a robust fuel system, capable of achieving very high burnup. Very little fuel performance data has been generated to date on inert matrix systems, and there are several issues specific to the behavior of higher actinides that do not allow extension of the existing uranium-plutonium fuel database to these new fuels. These issues include helium production, fuel-cladding-chemical-interaction, and americium migration. In the early 1990's, two U-Pu-Zr metal alloy fuel elements containing 1.2 wt.% Am and 1.3 wt.% Np were fabricated and irradiated to approximately 6 at.% burnup in the Experimental Breeder Reactor-II. Postirradiation examination results were not published; however the recent interest in fuel for actinide transmutation has prompted a reexamination of this data. The results of the postirradiation examination of this experiment, including gas sampling, metallography, and gamma scanning are discussed. Available data on inert matrix fuels and other fuels incorporating actinides are used to assess the implications of minor-actinide specific issues on transmuter fuel. Considerations for the design of nitride and oxide fuels, metallic fuels, and metal-matrix dispersion fuels are discussed.
Date: February 18, 2002
Creator: Meyer, M. K.; Hayes, S. L.; Crawford, D. C.; Pahl, R. G. & Tsai, H.
Partner: UNT Libraries Government Documents Department

ANISOTROPY DETERMINATIONS IN EXCHANGE SPRING MAGNETS.

Description: Ferromagnetic nanocomposites, or ''exchange spring'' magnets, possess a nanoscaled microstructure that allows intergrain magnetic exchange forces to couple the constituent grains and alter the system's effective magnetic anisotropies. While the effects of the anisotropy alterations are clearly seen in macroscopic magnetic measurement, it is extremely difficult to determine the detailed effects of the system's exchange coupling, such as the interphase exchange length, the inherent domain wall widths or the effective anisotropies of the system. Clarification of these materials parameters may be obtained from the ''micromagnetic'' phenomenological model, where the assumption of magnetic reversal initiating in the magnetically-soft regions of the exchange-spring maqet is explicitly included. This approach differs from that typically applied by other researchers and allows a quantitative estimate of the effective anisotropies of an exchange spring system. Hysteresis loops measured on well-characterized nanocomposite alloys based on the composition Nd{sub 2}Fe{sub 14}B + {alpha}-Fe at temperatures above the spin reorientation temperature were analyzed within the framework of the micromagnetic phenomenological model. Preliminary results indicate that the effective anisotropy constant in the material is intermediate to that of bulk {alpha}-Fe and bulk Nd{sub 2}Fe{sub 14}B and increases with decreasing temperature. These results strongly support the idea that magnetic reversal in nanocomposite systems initiates in the lower-anisotropy regions of the system, and that the soft-phase regions become exchange-hardened by virtue of their proximity to the magnetically-hard regions.
Date: August 18, 2002
Creator: LEWIS,L.H. & HARLAND,C.L.
Partner: UNT Libraries Government Documents Department

First Run II results with the CDF detector

Description: We report the first results obtained by the CDF collaboration from the analysis of the Tevatron Run II data collected until June 2002. All components of the CDF detector are operating at or near the design specifications. Typical physics signals are observed and used both to characterize the CDF detector performance, and to make several physics measurements. In spite of the still limited accumulated luminosity some measurements are already competitive with the best currently available.
Date: October 18, 2002
Creator: Bedeschi, F.
Partner: UNT Libraries Government Documents Department

MAGNETS FOR A MUON STORAGE RING.

Description: We present a new racetrack coil magnet design, with an open midplane gap, that keeps decay particles in a neutrino factory muon storage ring from directly hitting superconducting coils. The structure is very compact because coil ends overlap middle sections top and bottom for skew focusing optics. A large racetrack coil bend radius allows ''react and wind'' magnet technology to be used for brittle Nb{sub 3}Sn superconductors. We describe two versions: Design-A, a magnet presently under construction and Design-B, a further iterated concept that achieves the higher magnetic field quality specified in the neutrino factory feasibility Study-II report. For Design-B reverse polarity and identical end design of consecutive long and short coils offers theoretically perfect magnet end field error cancellation. These designs avoid the dead space penalty from coil ends and interconnect regions (a large fraction in machines with short length but large aperture magnets) and provide continuous bending or focusing without interruption. The coil support structure and cryostat are carefully optimized.
Date: June 18, 2002
Creator: PARKER, B.; ANERELLA, M.; GHOSH, A.; GUPTA, R.; HARRISON, M.; SCHMALZLE, J. et al.
Partner: UNT Libraries Government Documents Department

Modeling forces in high-temperature superconductors

Description: We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging.
Date: November 18, 1997
Creator: Turner, L. R. & Foster, M. W.
Partner: UNT Libraries Government Documents Department

FIRST DEMONSTRATION OF STAGED LASER ACCELERATION.

Description: Two independently-driven laser accelerators were operated together in series for the first time in a proof-of-principle experiment to demonstrate staging. The ability to stage together these devices is important for eventually building practical laser-driven accelerators. The laser accelerators consisted of two identical inverse free electron lasers (IFEL), where the first IFEL served as a prebuncher, which created {approx}3-fs long microbunches that were accelerated by the second IFEL. Precise and stable control of the phasing between the microbunches and laser wave inside the second IFEL was demonstrated. The effects of over-modulation of the prebuncher were also investigated. In all cases there was good agreement with the model. Additional details of the microbunch characteristics could be inferred by using the model. Plans for demonstrating monoenergetic laser acceleration are also presented.
Date: June 18, 2001
Creator: Kimura, W. D.; Campbell, L. P.; DILLEY,C.E.; Gottschalk, S. C.; Quimby, D. C.; BABZIEN,M. BEN-ZVI,I. et al.
Partner: UNT Libraries Government Documents Department

CPand t violation in neutrino oscillations

Description: In this short lecture, we discuss some basic phenomenological aspects of CP and T violation in neutrino oscillation. Using CP/T trajectory diagrams in the bi-probability space, we try to sketch out some essential features of the interplay between the effect of CP/T violating phase and that of the matter in neutrino oscillation.
Date: September 18, 2003
Creator: Minakata, Hisakazu; Nunokawa, Hiroshi & Parke, Stephen
Partner: UNT Libraries Government Documents Department

Efficient Displacement Discontinuity Method Using Fast Multipole Techniques

Description: The Displacement Discontinuity method has been widely used in geomechanics because it accurately captures the behavior of fractures within a rock mass by explicitly accounting for discontinuities. Unfortunately, boundary element techniques require the interactions between all pairs of elements to be evaluated and traditional approaches to the Displacement Discontinuity method are computationally expensive for large problem sizes. Approximate summation techniques, such as the Fast Multipole Method (FMM), calculate the interactions between N entities in time proportional to N. We have implemented a modified Fast Multipole approach which performs the necessary calculations in optimal time and with reduced memory usage. Furthermore, the FMM introduces parameters which can be selected to give the desired trade-off between efficiency and accuracy. The FMM approach permits much larger problems to be solved using desktop computers, opening up a range of applications. We present results demonstrating the speed of the code and several test cases involving rock fracture in compression.
Date: February 18, 2000
Creator: Morris, J.P. & Blair, S.C.
Partner: UNT Libraries Government Documents Department

CDF Run IIb Silicon Vertex Detector DAQ Upgrade

Description: The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.
Date: December 18, 2003
Creator: al., S. Behari et
Partner: UNT Libraries Government Documents Department

RARE KAON AND PION DECAYS.

Description: Recent results on rare kaon and pion decays are reviewed and prospects for future experiments are discussed.
Date: August 18, 2002
Creator: LITTENBERG,L.
Partner: UNT Libraries Government Documents Department

An investigation of the impedance rise and power fade in high-power, Li-ion cells.

Description: Two different cell chemistries, Gen 1 and Gen 2, were subjected to accelerated aging experiments. In Gen 1 calendar life experiments, useful cell life was strongly affected by temperature and time. Higher temperature accelerated cell performance degradation. The rates of impedance increase and power fade followed simple laws based on a power of time and Arrhenius kinetics. The data have been modeled using these two concepts, and the calculated data agree well with the experimental values. The Gen 1 calendar life increase and power fade data follow (time){sup 1/2} kinetics. This may be due to solid electrolyte interface (SEI) layer growth. From the cycle life experiments, the impedance increase data follow (time){sup 1/2} kinetics also, there is an apparent change in overall power fade mechanism, from 3% to 6% {Delta}SOC. Here, the power of time changes to a value less than 0.5 indicating that the power fade mechanism is due to factors more complex than just SEI layer growth. The Gen 2 calendar and cycle life experiments show the effect of cell chemistry on kinetics. The calendar life impedance data follow either ''linear'' or (time){sup 1/2} plus linear kinetics, depending on time and temperature.
Date: July 18, 2002
Creator: Bloom, I.; Jones, S. A.; Battaglia, V. S.; Polzin, E. G.; Henriksen, G. L.; Motloch, C. G. et al.
Partner: UNT Libraries Government Documents Department