387 Matching Results

Search Results

Characterization of the Dilute Ising Antiferromagnet

Description: A spin glass is a magnetic ground state in which ferromagnetic and antiferromagnetic exchange interactions compete, thereby creating frustration and a multidegenerate state with no long range order. An Ising system is a system where the spins are constrained to lie parallel or antiparallel to a primary axis. There has been much theoretical interest in the past ten years in the effects of applying a magnetic field transverse to the primary axis in an Ising spin glass at low temperatures and thus study phase transitions at the T=0 limit. The focus of this study is to search for and characterize a new Ising spin glass system. This is accomplished by site diluting yttrium for terbium in the crystalline material TbNi{sub 2}Ge{sub 2}. The first part of this work gives a brief overview of the physics of rare earth magnetism and an overview of experimental characteristics of spin glasses. This is followed by the methodology used to manufacture the large single crystals used in this study, as well as the measurement techniques used. Next, a summary of the results of magnetic measurements on across the dilution series from pure terbium to pure yttrium is presented. This is followed by detailed measurements on particular dilutions which demonstrate spin glass behavior. Pure TbNi{sub 2}Ge{sub 2} is an Ising antiferromagnet with a several distinct metamagnetic states below 17 K. As the terbium is alloyed with yttrium, these magnetic states are weakened in a consistent manner, as is seen in measurements of the transition temperatures and analysis of Curie-Weiss behavior at high temperature. At low concentrations of terbium, below 35%, long range order is no longer present and a spin-glass-like state emerges. This state is studied through various measurements, dc and ac susceptibility, resistivity, and specific heat. This magnetic behavior was then compared to that ...
Date: September 12, 2000
Creator: Wiener, T.
Partner: UNT Libraries Government Documents Department

Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

Description: An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. ...
Date: September 12, 2000
Creator: Praphairaksit, N.
Partner: UNT Libraries Government Documents Department

Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications

Description: One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites, which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP was measured to be 3.2 J/cm{sup 2} using a pump-probe experiment where the probe laser was a high intensity Q-switched master oscillator power amplifier system. The extraction data was successfully fit to a homogeneous extraction model. The crystal quality of Czochralski grown Yb:S-FAP crystals, which have been plagued by many defects such as cracking, cloudiness, bubble core, slip dislocations, and anomalous absorption, was investigated interferometrically and quantified by means of Power Spectral Density (PSD) plots. The very best crystals grown to date were found to have adequate crystal quality for use in the Mercury laser system. In addition to phase ...
Date: June 21, 2000
Creator: Bayramian, A.J.
Partner: UNT Libraries Government Documents Department

Experimental Study of the Spin Structure of the Neutron (3He) at low Q2: a connection between the Bjorken and Gerasimov-Drell-Hearn Sum Rules

Description: The authors have presented the motivations in gathering doubly polarized data in the quasi-elastic, resonance and DIS domains. These data were used to calculate the extended GDH integral. The comparison of this quantity with the spin dependent forward Compton amplitude {bar S}{sub 1} is of particular importance for the unification of the two strong interaction descriptions (nucleonic/hadronic vs. partonic) because {bar S}{sub 1} is the first quantity theoretically calculable in the full Q{sup 2} domain of the strong interaction. Such a data taking was made possible because of three major technical achievements: (1) the beam of high duty cycle (100%), high current (up to 70 {micro}A) and high polarization (70%); (2) the {sup 3}He target of high density (above 10 atm) with a polarization of 35% and a length of 40 cm; and (3) the large acceptance (6 msr) and high resolution ({Delta}P/P {approx_equal} 10{sup {minus}4}) spectrometers. These features, available at Jefferson Lab, enabled them to achieve the highest luminosity in the world (about 10{sup 36} s{sup {minus}1} cm{sup {minus}2} with a current of 15 {micro}A) as far as polarized {sup 3}He targets are concerned. Consequently they were able to gather, in a rather short period of time (3 months), a large amount of data covering a large kinematical domain.
Date: October 9, 2000
Creator: Deur, Alexander
Partner: UNT Libraries Government Documents Department

Measurement of a Weak Polarization Sensitivity to the Beam Orbit of the CEBAF Accelerator

Description: An accelerator-based experiment was performed using the CEBAF accelerator of the Thomas Jefferson National Accelerator Facility to investigate a predicted sensitivity of the beam polarization to the vertical betatron orbit in the recirculation arcs. This is the first measurement of any such effect at CEBAF, and provides information about the polarized beam delivery performance of the accelerator. A brief description of the accelerator is given, followed by the experimental methods used and the relevant issues involved in measuring a small ({approximately} 10{sup {minus}2}) change in the beam polarization. Results of measurements of the polarization sensitivity parameters and the machine energy by polarization transport techniques are presented. The parameters were obtained by measurement of the strength of the effect as a function of orbit amplitude and spin orientation, to confirm the predicted coupling between the spin orientation and the quadrupole fields in the beam transport system. This experiment included characterizing the injector spin manipulation system and 5 MeV Mott polarimeter, modeling of the polarization transport of the accelerator, installation of magnets to create a modulated orbit perturbation in a single recirculation arc, and detailed studies of the Hall C Moeller polarimeter.
Date: April 1, 2000
Creator: Grames, Joseph
Partner: UNT Libraries Government Documents Department

A measurement of t{anti t} production cross section in p{anti p} collisions at {radical}s = 1.8 TeV using neural networks

Description: The authors present the results of a new measurement of the t{anti t} production cross section using e{mu} channel in p{anti p} collisions at {radical}s = 1.8 TeV. This study corresponds to an integrated luminosity of 108.3 {+-} 5.7 pb{sup {minus}1} acquired by the D0 detector during the Fermilab Tevatron Collider Run 1 (1992--1996). By using neural network techniques instead of the conventional analysis methods, the authors show that the signal acceptance can be increased by 10% (for m{sub t} = 172 GeV/c{sup 2}) while the background remains constant. Four e{mu} events are observed in data with an estimated background of 0.22 {+-} 0.14 corresponding to a t{anti t} production cross section of 9.75 {+-} 5.53 pb.
Date: June 16, 2000
Creator: Singh, Harpreet
Partner: UNT Libraries Government Documents Department

Extraction of the width of the W boson from a measurement of the ratio of the W and Z cross sections

Description: This dissertation reports on measurements of inclusive cross sections times branching fractions into electrons for W and Z bosons produced in p{anti p} collisions at {radical}s = 1.8 TeV. From an integrated luminosity of 84.5 pb{sup {minus}1} recorded in 1994--1995 by the D0 detector at the Fermilab Tevatron {Lambda} the cross sections are measured to be {sigma}p{anti p} {r_arrow} W + X {center_dot} B(W {r_arrow} e{nu}) = 2,310 {+-} 10 (stat) {+-} 50 (Syst) {+-} 100 (lum) pb and {sigma}(p{anti p} {r_arrow} Z + X) {center_dot} B(Z {r_arrow} ee) = 221 {+-} 3 (stat) {+-} 4 (Syst) {+-} 10 (lum) pb. The cross section ratio R is determined to be {sigma}(p{anti p} {r_arrow} W + X) {center_dot} B(W {r_arrow} e{nu})/{sigma}(p{bar p} {r_arrow} Z + X) {center_dot} B(Z {r_arrow} ee) = 10.43 {+-} 0.15 (stat) {+-} 0.20 (syst) {+-} 0.10 (NLO){Lambda} and R is used to determine B(W {r_arrow} e{nu}) = 0.1044 {+-} 0.0015 (stat) {+-} 0.0020 (syst) {+-} 0.0017 (theory) {+-} 0.0010 (NLO){Lambda} and {Lambda}{sub W} = 2.169 {+-} 0.031 (stat) {+-} 0.042 (syst) {+-} 0.041 (theory) {+-} 0.022 (NLO) GeV. The latter is used to set a 95% confidence level upper limit on the partial decay width of the W boson into non-standard model final states {Lambda}{Lambda}{sub W}{sup inv}{Lambda} of 0.213 GeV.
Date: June 15, 2000
Creator: Gomez, Gervasio
Partner: UNT Libraries Government Documents Department

Spin correlation in t{anti t} production from p{anti p} collisions at {radical}s = 1.8 TeV

Description: The Standard Model predicts that the lifetime of the top quark is shorter than the typical time scale at which hadronization process occurs, and the spin information at its production is preserved. Spin correlation of the t{anti t} system from p{anti p} collisions at the Tevatron is analyzed using 6 events in the dilepton channels collected using the D0 detector. Spin correlation factor of {kappa} > {minus} 0.25 at 68% CL is obtained from the data.
Date: June 15, 2000
Creator: Choi, Suyong
Partner: UNT Libraries Government Documents Department

A Scaled Final Focus Experiment for Heavy Ion Fusion

Description: A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows for the observation of significant effects on both the size and shape of the focal spot when the electrons are added.
Date: September 19, 2000
Creator: MacLaren, Stephan, Alexander
Partner: UNT Libraries Government Documents Department

Design and construction of a Fourier transform soft x-ray interferometer

Description: Helium, with its two electrons and one nucleus, is a three-body system. One of the models for investigating correlated electron motion in this system is autoionization, produced via double excitation of the electrons. Predictions about the autoionization spectrum of helium have differed from each other and from preliminary experimental data. However, previous experiments have not been able to distinguish among the theoretical predictions because their energy resolution is not high enough to resolve the narrow linewidths of quasi-forbidden peaks and the resonances that appear in the highest excited states. Consequently, a team of researchers at Lawrence Berkeley National Laboratory have embarked on a project for building a high-resolution Fourier-Transform Soft X-ray (or VUV) interferometer (FTSX) to provide definitive data to answer remaining questions about the autoionization spectrum of helium. The design and construction of this interferometer is described in detail below, including the use of a flexure stage to provide the large path length difference necessary for high resolution measurements, the manufacture of x-ray beamsplitters, a description of the software, and the solution to the problems of stick-slip, vibration, and alignment. Current progress of its development is also described, as well as future goals.
Date: May 10, 2000
Creator: Spring, John A.
Partner: UNT Libraries Government Documents Department

Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

Description: The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 {approx} 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. ...
Date: May 20, 2000
Creator: Yoo, Jong Hyun
Partner: UNT Libraries Government Documents Department

Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

Description: This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well matched to ...
Date: September 1, 2000
Creator: Kay, Alexander William
Partner: UNT Libraries Government Documents Department

Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

Description: The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.
Date: June 9, 2000
Creator: Loo, Billy W., Jr.
Partner: UNT Libraries Government Documents Department

P-type doping of GaN

Description: After implantation of As, As + Be, and As + Ga into GaN and annealing for short durations at temperatures as high as 1500 C, the GaN films remained highly resistive. It was apparent from c-RBS studies that although implantation damage did not create an amorphous layer in the GaN film, annealing at 1500 C did not provide enough energy to completely recover the radiation damage. Disorder recovered significantly after annealing at temperatures up to 1500 C, but not completely. From SIMS analysis, oxygen contamination in the AIN capping layer causes oxygen diffusion into the GaN film above 1400 C. The sapphire substrate (A1203) also decomposed and oxygen penetrated into the backside of the GaN layer above 1400 C. To prevent donor-like oxygen impurities from the capping layer and the substrate from contaminating the GaN film and compensating acceptors, post-implantation annealing should be done at temperatures below 1500 C. Oxygen in the cap could be reduced by growing the AIN cap on the GaN layer after the GaN growth run or by depositing the AIN layer in a ultra high vacuum (UHV) system post-growth to minimize residual oxygen and water contamination. With longer annealing times at 1400 C or at higher temperatures with a higher quality AIN, the implantation drainage may fully recover.
Date: April 10, 2000
Creator: Wong, R.K.
Partner: UNT Libraries Government Documents Department

Steric and electronic effects of 1,3-disubstituted cyclopentadienyl ligands on metallocene derivatives of Cerium, Titanium, Manganese, and Iron

Description: Sterically demanding 1,3-disubstituted cyclopentadienyl ligands were used to modify the physical properties of the corresponding metallocenes. Sterically demanding ligands provided kinetic stabilization for trivalent cerium compounds. Tris(di-t-butylcyclopentadienyl)cerium was prepared and anion competition between halides and cyclopentadienyl groups which had complicated synthesis of the tris(cyclopentadienyl)compound was qualitatively examined. Bis(di-t-butylcyclopentadienyl)cerium methyl was prepared and its rate of decomposition, by ligand redistribution, to tris(di-t-butylcyclopentadienyl)cerium was shown to be slower than the corresponding rate for less sterically demanding ligands. Asymmetrically substituted ligands provided a symmetry label for examination of chemical exchange processes. Tris[trimethylsilyl(t-butyl)cyclopentadienyl]cerium was prepared and the rate of interconversion between the C1 and C3 isomers was examined. The enthalpy difference between the two distereomers is 7.0 kJ/mol. The sterically demanding cyclopentadienyl ligands ansa-di-t-butylcyclopentadiene (Me2Si[(Me3C)2C5H3]2), ansa-bis(trimethylsilyl)cyclopentadiene (Me2Si[(Me3Si)2C5H3]2) and tetra-t-butylfulvalene and metallocene derivatives of the ligands were prepared and their structures were examined by single crystal X-ray crystallography. The effect that substituents on the cyclopentadienyl ring have on the pi-electron system of the ligand was examined through interaction between ligand and metal orbitals. A series of 1,3-disubstituted manganocenes was prepared and their electronic states were determined by solid-state magnetic susceptibility, electron paramagnetic resonance, X-ray crystallography, and variable temperature UV-vis spectroscopy. Spin-equilibria in [(Me3C)2C5H3]2Mn and [(Me3C)(Me3Si)C5H3]2Mn were examined and indicate an enthalpy difference of 15 kJ/mol between the high-spin and low-spin forms. Cyclopentadienyl groups resistant to intramolecular oxidative addition allowed isolation of compounds susceptible to intramolecular decomposition. A kinetically stable, base-free titanocene was prepared using di-t-butylcyclopentadienyl ligands and the reactivity of the compound toward small molecules was investigated. The titanocene reacts reversibly with hydrogen to form the titanocene dihydride and the equilibrium in solution between titanocene dihydride, and titanocene and hydrogen, was examined.
Date: May 19, 2000
Creator: Sofield, C.D.
Partner: UNT Libraries Government Documents Department

Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

Description: The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.
Date: May 1, 2000
Creator: Roberts, J.G.
Partner: UNT Libraries Government Documents Department