16 Matching Results

Search Results

Efficient biased random bit generation for parallel processing

Description: A lattice gas automaton was implemented on a massively parallel machine (the BBN TC2000) and a vector supercomputer (the CRAY C90). The automaton models Burgers equation {rho}t + {rho}{rho}{sub x} = {nu}{rho}{sub xx} in 1 dimension. The lattice gas evolves by advecting and colliding pseudo-particles on a 1-dimensional, periodic grid. The specific rules for colliding particles are stochastic in nature and require the generation of many billions of random numbers to create the random bits necessary for the lattice gas. The goal of the thesis was to speed up the process of generating the random bits and thereby lessen the computational bottleneck of the automaton.
Date: September 28, 1994
Creator: Slone, D.M.
Partner: UNT Libraries Government Documents Department

Fabrication of metal matrix composite by semi-solid powder processing

Description: Various metal matrix composites (MMCs) are widely used in the automotive, aerospace and electrical industries due to their capability and flexibility in improving the mechanical, thermal and electrical properties of a component. However, current manufacturing technologies may suffer from insufficient process stability and reliability and inadequate economic efficiency and may not be able to satisfy the increasing demands placed on MMCs. Semi-solid powder processing (SPP), a technology that combines traditional powder metallurgy and semi-solid forming methods, has potential to produce MMCs with low cost and high efficiency. In this work, the analytical study and experimental investigation of SPP on the fabrication of MMCs were explored. An analytical model was developed to understand the deformation mechanism of the powder compact in the semi-solid state. The densification behavior of the Al6061 and SiC powder mixtures was investigated with different liquid fractions and SiC volume fractions. The limits of SPP were analyzed in terms of reinforcement phase loading and its impact on the composite microstructure. To explore adoption of new materials, carbon nanotube (CNT) was investigated as a reinforcing material in aluminum matrix using SPP. The process was successfully modeled for the mono-phase powder (Al6061) compaction and the density and density distribution were predicted. The deformation mechanism at low and high liquid fractions was discussed. In addition, the compaction behavior of the ceramic-metal powder mixture was understood, and the SiC loading limit was identified by parametric study. For the fabrication of CNT reinforced Al6061 composite, the mechanical alloying of Al6061-CNT powders was first investigated. A mathematical model was developed to predict the CNT length change during the mechanical alloying process. The effects of mechanical alloying time and processing temperature during SPP were studied on the mechanical, microstructural and compositional properties of the Al6061-CNT composites. A shear lag model was applied to predict the ...
Date: November 28, 2012
Creator: Wu, Yufeng
Partner: UNT Libraries Government Documents Department

Multicore Architecture-aware Scientific Applications

Description: Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a large scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.
Date: November 28, 2011
Creator: Srinivasa, Avinash
Partner: UNT Libraries Government Documents Department

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

Description: The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.
Date: August 28, 2012
Creator: Kim, Min Gyu
Partner: UNT Libraries Government Documents Department

Magnetic spectroscopy and microscopy of functional materials

Description: Heusler intermetallics Mn{sub 2}Y Ga and X{sub 2}MnGa (X; Y =Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials for todays applications and to design novel ones for tomorrow. Synchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specifc information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange. Fundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. The chapter progression is as follows: an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of X{sub 2}MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn{sub 2}Y Ga to the logical Mn{sub 3}Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a Think Tank for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co{sub 2}FeSi (Appendix B).
Date: January 28, 2011
Creator: Jenkins, C.A.
Partner: UNT Libraries Government Documents Department

Suppressed Charmed B Decay

Description: This thesis describes the measurement of the branching fractions of the suppressed charmed B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays and the non-resonant B{sup 0} {yields} D{sup (*)-} {eta}{pi}{sup +} decays in approximately 230 million {Upsilon}(4S) {yields} B{bar B} events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10{sup -6}. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle {gamma}, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle {gamma} can be performed using the decays of neutral B mesons. The B{sup 0} {yields} D{sup (*)-} a{sub 0}{sup +} decay is sensitive to the angle {gamma} and, in comparison ...
Date: November 28, 2011
Creator: Snoek, Hella Leonie & /Vrije U., Amsterdam
Partner: UNT Libraries Government Documents Department

A Study of Selected Properties and Applications of AlMgB14 and Related Composites: Ultra-Hard Materials

Description: This research presents a study of the hardness, electrical, and thermal properties AlMgB{sub 14} containing Al{sub 2}MgO{sub 4} spinel. This research also investigated how much Al{sub 2}MgO{sub 4} spinel consistently forms with AlMgB{sub 14}, if AlMgB{sub 14} materials can be produced by hot isostatic pressing (HIP), what effects TiC and TiB{sub 2} have on this composite material, and the importance of mechanical alloying. Included also is a study of the variation in hardness measurements and how they relate to SI units. Heretofore, all ultra-hard materials (hardness > 40 GPA) have been found to be cubic in structure, electrical insulators, and expensive; the behavior of AlMgB{sub 14}, which in certain specimens and compositions can have hardness values greater than 40 GPa, is therefore quite unusual since it is non-cubic, conductive, and moderate in cost. This offers an opportunity to investigate the relationship between hardness, thermal, and electrical properties from a new perspective. The main purpose of this project was to characterize the different properties of the AlMgB{sub 14} materials and to demonstrate that this material can be made in bulk. The technologies used for this study include microhardness measurement techniques, scanning electron microscopy, energy dispersive spectroscopy, x-ray diffraction spectroscopy, x-ray diffraction spectroscopy at different temperatures, optical microscopy, thermomechanical analysis, differential thermal analysis, 4-point probe resistivity, density techniques, Seebeck Effect, and Hall Effect. This research may lead to use of this material for applications where high abrasion resistance along with electrical conduction is needed. Also this research gave more information about a material that could have a great impact on industrial applications.
Date: May 28, 2002
Creator: Lewis, Theron L.
Partner: UNT Libraries Government Documents Department

THE TRIPLE--REGGE VERTEX.

Description: No Description Available.
Date: April 28, 1970
Creator: Misheloff, M. N.
Partner: UNT Libraries Government Documents Department

TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

Description: This study focused on creating a new tristructural isotropic (TRISO) coated particle fuel performance model and demonstrating the integration of this model into an existing system of neutronics and heat transfer codes, creating a user-friendly option for including fuel performance analysis within system design optimization and system-level trade-off studies. The end product enables both a deeper understanding and better overall system performance of nuclear energy systems limited or greatly impacted by TRISO fuel performance. A thorium-fueled hybrid fusion-fission Laser Inertial Fusion Energy (LIFE) blanket design was used for illustrating the application of this new capability and demonstrated both the importance of integrating fuel performance calculations into mainstream design studies and the impact that this new integrated analysis had on system-level design decisions. A new TRISO fuel performance model named TRIUNE was developed and verified and validated during this work with a novel methodology established for simulating the actual lifetime of a TRISO particle during repeated passes through a pebble bed. In addition, integrated self-consistent calculations were performed for neutronics depletion analysis, heat transfer calculations, and then fuel performance modeling for a full parametric study that encompassed over 80 different design options that went through all three phases of analysis. Lastly, side studies were performed that included a comparison of thorium and depleted uranium (DU) LIFE blankets as well as some uncertainty quantification work to help guide future experimental work by assessing what material properties in TRISO fuel performance modeling are most in need of improvement. A recommended thorium-fueled hybrid LIFE engine design was identified with an initial fuel load of 20MT of thorium, 15% TRISO packing within the graphite fuel pebbles, and a 20cm neutron multiplier layer with beryllium pebbles in flibe molten salt coolant. It operated at a system power level of 2000 MW{sub th}, took about 3.5 years ...
Date: November 28, 2011
Creator: Powers, J J
Partner: UNT Libraries Government Documents Department

Time-varying Reeb Graphs: A Topological Framework Supporting the Analysis of Continuous Time-varying Data

Description: I present time-varying Reeb graphs as a topological framework to support the analysis of continuous time-varying data. Such data is captured in many studies, including computational fluid dynamics, oceanography, medical imaging, and climate modeling, by measuring physical processes over time, or by modeling and simulating them on a computer. Analysis tools are applied to these data sets by scientists and engineers who seek to understand the underlying physical processes. A popular tool for analyzing scientific datasets is level sets, which are the points in space with a fixed data value s. Displaying level sets allows the user to study their geometry, their topological features such as connected components, handles, and voids, and to study the evolution of these features for varying s. For static data, the Reeb graph encodes the evolution of topological features and compactly represents topological information of all level sets. The Reeb graph essentially contracts each level set component to a point. It can be computed efficiently, and it has several uses: as a succinct summary of the data, as an interface to select meaningful level sets, as a data structure to accelerate level set extraction, and as a guide to remove noise. I extend these uses of Reeb graphs to time-varying data. I characterize the changes to Reeb graphs over time, and develop an algorithm that can maintain a Reeb graph data structure by tracking these changes over time. I store this sequence of Reeb graphs compactly, and call it a time-varying Reeb graph. I augment the time-varying Reeb graph with information that records the topology of level sets of all level values at all times, that maintains the correspondence of level set components over time, and that accelerates the extraction of level sets for a chosen level value and time. Scientific data sampled in space-time ...
Date: November 28, 2006
Creator: Mascarenhas, A
Partner: UNT Libraries Government Documents Department

SQUID magnetometry from nanometer to centimeter length scales

Description: The development of Superconducting QUantum Interference Device (SQUID)-based magnetometer for two applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nano-scale magnetometery, are the focus of this thesis.
Date: June 28, 2010
Creator: Hatridge, Michael J.
Partner: UNT Libraries Government Documents Department