10 Matching Results

Search Results

Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

Description: One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method ...
Date: May 22, 2008
Creator: Gliebe, Cheryn E & Ananth, Nandini
Partner: UNT Libraries Government Documents Department

Measurements of Time-Dependent CP-Asymmetry Parameters in B Meson Decays to \eta^{\prime} K^0 and of Branching Fractions of SU(3) Related Modes with BaBar Experiment at SLAC

Description: In this thesis work we have measured the following upper limits at 90% of confidence level, for B meson decays (in units of 10{sup -6}), using a statistics of 465.0 x 10{sup 6} B{bar B} pairs: {Beta}(B{sup 0} {yields} {eta}K{sup 0}) < 1.6 {Beta}(B{sup 0} {yields} {eta}{eta}) < 1.4 {Beta}(B{sup 0} {yields} {eta}{prime}{eta}{prime}) < 2.1 {Beta}(B{sup 0} {yields} {eta}{phi}) < 0.52 {Beta}(B{sup 0} {yields} {eta}{omega}) < 1.6 {Beta}(B{sup 0} {yields} {eta}{prime}{phi}) < 1.2 {Beta}(B{sup 0} {yields} {eta}{prime}{omega}) < 1.7 We have no observation of any decay mode, statistical significance for our measurements is in the range 1.3-3.5 standard deviation. We have a 3.5{sigma} evidence for B {yields} {eta}{omega} and a 3.1 {sigma} evidence for B {yields} {eta}{prime}{omega}. The absence of observation of the B{sup 0} {yields} {eta}K{sup 0} open an issue related to the large difference compared to the charged mode B{sup +} {yields} {eta}K{sup +} branching fraction, which is measured to be 3.7 {+-} 0.4 {+-} 0.1 [118]. Our results represent substantial improvements of the previous ones [109, 110, 111] and are consistent with theoretical predictions. All these results were presented at Flavor Physics and CP Violation (FPCP) 2008 Conference, that took place in Taipei, Taiwan. They will be soon included into a paper to be submitted to Physical Review D. For time-dependent analysis, we have reconstructed 1820 {+-} 48 flavor-tagged B{sup 0} {yields} {eta}{prime}K{sup 0} events, using the final BABAR statistic of 467.4 x 10{sup 6} B{bar B} pairs. We use these events to measure the time-dependent asymmetry parameters S and C. We find S = 0.59 {+-} 0.08 {+-} 0.02, and C = -0.06 {+-} 0.06 {+-} 0.02. A non-zero value of C would represent a directly CP non-conserving component in B{sup 0} {yields} {eta}{prime}K{sup 0}, while S would be equal to sin2{beta} measured in B{sup 0} ...
Date: January 22, 2009
Creator: Biassoni, Pietro & U., /Milan
Partner: UNT Libraries Government Documents Department

Radiative B Meson Decay as a Probe of Physics Beyond the Standard Model: Time-Dependent CP Violation in B0 --> KS pi0 gamma and the B --> phi K gamma Branching Fraction

Description: The author presents measurements of radiative B meson decays to the final states K{sub s}{sup 0}{pi}{sup 0}{gamma} and K{phi}{gamma} based on data collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. In a data sample of 467 million B{bar B} pairs, the time-dependent CP asymmetry in B{sup 0} {yields} K{sub s}{sup 0}{pi}{sup 0}{gamma} decays is measured in two regions of K{sub s}{sup 0}-{pi}{sup 0} invariant mass. In the K* region, 0.8 < m(K{sub s}{sup 0}{pi}{sup 0}) < 1.0 GeV/c{sup 2}, we find S{sub K*{gamma}} = -0.03 {+-} 0.29 {+-} 0.03 and C{sub K*{gamma}} = -0.14 {+-} 0.16 {+-} 0.03; in the range 1.1 < m(K{sub s}{sup 0}{pi}{sup 0}) < 1.8 GeV/c{sup 2}, they find S{sub K{sub s}{sup 0}{pi}{sup 0}{gamma}} = -0.78 {+-} 0.59 {+-} 0.09 and C{sub K{sub s}{sup 0}{pi}{sup 0}{gamma}} = -0.36 {+-} 0.33 {+-} 0.04. With a sample of 228 million B{bar B} pairs they measure the branching fraction {Beta}(B{sup +} {yields} K{sup +}{phi}{gamma}) = (3.5 {+-} 0.6 {+-} 0.4) x 10{sup -6} and set the limit {Beta}(B{sup 0} {yields} K{sup 0}{phi}{gamma}) < 2.7 x 10{sup -6} at 90% confidence level. The direct CP asymmetry in B{sup +} {yields} K{sup +}{phi}{gamma} is found to be A{sub CP} = (-26 {+-} 14 {+-} 5)%. In each case the uncertainties are statistical and systematic, respectively.
Date: January 22, 2009
Creator: Tuggle, Joseph Marion, IV & U., /Maryland
Partner: UNT Libraries Government Documents Department

Search for CP violation in singly Cabibbo suppressed four-body D decays

Description: We search for CP violation in a sample of 4.7 x 10{sup 4} singly Cabibbo suppressed D{sup 0} {yields} K{sup +} K{sup -} {pi}{sup +}{pi}{sup -} decays and 1.8(2.6) x 10{sup 4} D{sub (s)}{sup +} {yields} K{sub S}{sup 0} K{sup +} {pi}{sup +} {pi}{sup -} decays. CP violation is searched for in the difference between the T-odd asymmetries, obtained using triple product correlations, measured for D and {bar D} decays. The measured CP violation parameters are A{sub T}(D{sup 0}) = (1.0 {+-} 5.1(stat) {+-} 4.4(syst)) x 10{sup -3}, A{sub T}(D{sup +}) = (-11.96 {+-} 10.04(stat) {+-} 4.81(syst)) x 10{sup -3} and A{sub T}(D{sub s}{sup +}) = (-13.57 {+-} 7.67(stat) {+-} 4.82(syst)) x 10{sup -3}. This search for CP violation showed that the T-odd correlations are a powerful tool to measure the CP violating observable A{sub T}. The relative simplicity of an analysis based on T-odd correlations and the high quality results that can be obtained, allow to consider this tool as fundamental to search for CP violation in four-body decays. Even if the CP violation has not been found, excluding any New Physics effect to the sensitivity of about 0.5%, it is still worth to search for CP violation in D decays. The high statistics that can be obtained at the LHC or by the proposed high luminosity B-factories, make this topic to be considered in high consideration by experiments such as LHCb, SuperB or SuperBelle. The results outlined in this thesis strongly suggest to include a similar analysis into the Physics program of these experiments.
Date: June 22, 2011
Creator: Martinelli, Maurizio & U., /Bari
Partner: UNT Libraries Government Documents Department

Study of charmonium resonances in the gg -> K0SK pi- and gg -> K K-pi pi-pi0 processes

Description: This thesis reports the analysis of the e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} and e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} processes using the final dataset of the BABAR experiment located at the SLAC National Accelerator Laboratory. From previous measurements, the K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} final state is known to show a clear signal from the {eta}{sub c}(2S) particle. This c{bar c} state escaped detection for almost twenty years and its properties are still not well established on the experimental ground, while accurate predictions exist on the theoretical side. The e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} process is first studied in this thesis. An accurate determination of the {eta}{sub c}(2S) properties is obtained in the K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} decay mode. We also report the first observation of {eta}{sub c}(2S) and other charmonium states to the K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} final state. The results of this thesis have been published in Physical Review D, and will be useful to test theoretical models describing the charmonium system. The thesis is organized in four chapters. The first one gives a brief introduction of the theoretical models used to describe the charmonium system. The second one discuss the current status of conventional and exotic charmonium spectroscopy, reporting recent experimental results and their interpretation. The third Chapter is devoted to describe the BABAR experiment. The analysis technique and results are described in Chapter 4. Finally, conclusions from this analysis are drawn.
Date: February 22, 2012
Creator: Biassoni, Pietro & /U. Milan, Dept. Phys.
Partner: UNT Libraries Government Documents Department


Description: The thesis is concerned with the relation between a microscopic approach and a macroscopic approach to the study of the nuclear binding energy as a function of neutron number, proton number and nuclear deformations. First of all we give a general discussion of the potential energy of a system which can be divided into a bulk region and a thin skin layer. We find that this energy can be written down in the usual liquid drop type of expression, i.e., in terms of the volume, the surface area and other macroscopic properties of the system. The discussion is illustrated by a study of noninteracting particles in an orthorhombic potential well with zero potential inside and infinite potential outside. The total energy is calculated both exactly (a microscopic approach) and also from a liquid drop type of expression (a macroscopic approach). It turns out that the latter approach reproduces the smooth average of the exact results very well. We next make a digression to study the saddle point shapes of a charged conducting drop on a pure liquid drop model. We compare the properties of a conducting drop with those of a drop whose charges are distributed uniformly throughout its volume. The latter is the usual model employed in the study of nuclear fission. We also determined some of the more important symmetric saddle point shapes. In the last part of the thesis we generalize a method due to Strutinski to synthesize a microscopic approach (the Nilsson model) and a macroscopic approach (the liquid drop model). The results are applied to realistic nuclei. The possible occurrence of shape isomers comes as a natural consequence of the present calculation. Their trends as a function of neutron and proton members are discussed and the results are tabulated. We also work out the stabilities ...
Date: May 22, 1969
Creator: Tsang, Chin-Fu.
Partner: UNT Libraries Government Documents Department

Detection of Actinides via Nuclear Isomer De-Excitation

Description: This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.
Date: July 22, 2009
Creator: Francy, Christopher J.
Partner: UNT Libraries Government Documents Department

Broken flavor symmetries in high energy particle phenomenology

Description: Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong.
Date: February 22, 1995
Creator: Antaramian, A.
Partner: UNT Libraries Government Documents Department

Novel joining of dissimilar ceramics in the Si{sub 3}N{sub 4}-Al{sub 2}O{sub 3} system using polytypoid functional gradients

Description: A unique approach to crack-free joining of heterogeneous ceramics is demonstrated by the use of sialon polytypoids as Functionally Graded Materials (FGM) as defined by the phase diagram in the system, Si3N4-Al2O3. Polytypoids in the Al2O3-Si3N4 system offer a path to compatibility for such heterogeneous ceramics. The first part of the dissertation describes successful hot press sintering of multilayered FGM's with 20 layers of thickness 500 mm each. Transmission Electron Microscopy was used to identify the polytypoids at the interfaces of different areas of the joint. It has been found that the 15R polytypoid was formed in the Al2O3-contained layers and the 12H polytypoid was formed in the Si3N4-contained layers. The second part of the dissertation discusses the mechanical properties of these polytypoidally joined Si3N4-Al2O3. The thermal stresses of this FGM junction were analyzed using a finite element analysis program (FEAP) taking into account both coefficient of thermal expansion (CTE) and modulus variations. From this analysis, the result showed a dramatic decrease in radial, axial and hoop stresses as the FGM changes from three layers to 20 graded layers. Scaling was considered, showing that the graded transition layer should constitute about 75 percent or more of the total sample thickness to reach a minimal residual stress. Oriented Vickers indentation testing was used to qualitatively characterize the strengths of the joint and the various interfaces. The indentation cracks were minimally or not deflected at the sialon layers, implying strong interfaces. Finally, flexural testing was conducted at room temperature and at high temperature. The average strength at room temperature was found to be 581 MPa and the average strength at high temperature (1200 degrees C) was found to be 262 MPa. Scanning electron microscope observation of fracture surfaces at a different loading rates indicated that the strength loss at higher temperatures was ...
Date: August 22, 2001
Creator: Lee, Caroline Sunyong
Partner: UNT Libraries Government Documents Department