41 Matching Results

Search Results

Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

Description: The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C−N/C−H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-iPr,Me2}){sub 2}}Zr(NMe{sub 2}){sub 2} ({S-2}Zr(NMe{sub 2}){sub 2}) displays highest activity and enantioselectivity. Interestingly, {S-2}Zr(NMe{sub 2}){sub 2} also desymmetrizes olefin moieties of achiral non-conjugated aminodienes and aminodiynes during cyclization. The cyclization of aminodienes catalyzed by {S-2}Zr(NMe{sub 2}){sub 2} affords diastereomeric mixture of cis and trans cylic amines with high diasteromeric ratios and excellent enantiomeric excesses. Similarly, the desymmetrization of alkyne moieties in {S-2}Zr(NMe{sub 2}){sub 2}-catalyzed cyclization of aminodiynes provides corresponding cyclic imines bearing quaternary stereocenters with enantiomeric excesses up to 93%. These stereoselective desymmetrization reactions are significantly affected by concentration of the substrate, temperature, and the presence of a ...
Date: December 17, 2012
Creator: Manna, Kuntal
Partner: UNT Libraries Government Documents Department

Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

Description: Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are examined with transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SAED patterns from multilayered assemblies show that the nanocrystals have preferred crystallographic orientations. ...
Date: June 17, 2006
Creator: Aruguete, Deborah Michiko
Partner: UNT Libraries Government Documents Department

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

Description: In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.
Date: May 17, 2007
Creator: Liu, Haitao
Partner: UNT Libraries Government Documents Department

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

Description: In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This method is first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.
Date: May 17, 2007
Creator: Liu, Haitao
Partner: UNT Libraries Government Documents Department

Behavior of the Diamond Difference and Low-Order Nodal Numerical Transport Methods in the Thick Diffusion Limit for Slab Geometry

Description: The objective of this work is to investigate the thick diffusion limit of various spatial discretizations of the one-dimensional, steady-state, monoenergetic, discrete ordinates neutron transport equation. This work specifically addresses the two lowest order nodal methods, AHOT-N0 and AHOT-N1, as well as reconsiders the asymptotic limit of the Diamond Difference method. The asymptotic analyses of the AHOT-N0 and AHOT-N1 nodal methods show that AHOT-N0 does not possess the thick diffusion limit for cell edge or cell average fluxes except under very limiting conditions, which is to be expected considering the AHOT-N0 method limits to the Step method in the thick diffusion limit. The AHOT-N1 method, which uses a linear in-cell representation of the flux, was shown to possess the thick diffusion limit for both cell average and cell edge fluxes. The thick diffusion limit of the DD method, including the boundary conditions, was derived entirely in terms of cell average scalar fluxes. It was shown that, for vacuum boundaries, only when {sigma}{sub t}, h, and Q are constant and {sigma}{sub a} = 0 is the asymptotic limit of the DD method close to the finite-differenced diffusion equation in the system interior, and that the boundary conditions between the systems will only agree in the absence of an external source. For a homogeneous medium an effective diffusion coefficient was shown to be present, which was responsible for causing numeric diffusion in certain cases. A technique was presented to correct the numeric diffusion in the interior by altering certain problem parameters. Numerical errors introduced by the boundary conditions and material interfaces were also explored for a two-region problem using the Diamond Difference method. A discrete diffusion solution which exactly solves the one-dimensional diffusion equation in a homogeneous region with constant cross sections and a uniform external source was also developed and shown ...
Date: April 17, 2007
Creator: Gill, D. F.
Partner: UNT Libraries Government Documents Department

Length-Limited Data Transformation and Compression

Description: Scientific computation is used for the simulation of increasingly complex phenomena, and generates data sets of ever increasing size, often on the order of terabytes. All of this data creates difficulties. Several problems that have been identified are (1) the inability to effectively handle the massive amounts of data created, (2) the inability to get the data off the computer and into storage fast enough, and (3) the inability of a remote user to easily obtain a rendered image of the data resulting from a simulation run. This dissertation presents several techniques that were developed to address these issues. The first is a prototype bin coder based on variable-to-variable length codes. The codes utilized are created through a process of parse tree leaf merging, rather than the common practice of leaf extension. This coder is very fast and its compression efficiency is comparable to other state-of-the-art coders. The second contribution is the Piecewise-Linear Haar (PLHaar) transform, a reversible n-bit to n-bit wavelet-like transform. PLHaar is simple to implement, ideal for environments where transform coefficients must be kept the same size as the original data, and is the only n-bit to n-bit transform suitable for both lossy and lossless coding.
Date: May 17, 2005
Creator: Senecal, J G
Partner: UNT Libraries Government Documents Department

Measurement of the Inclusive Branching FractionsB(B^- to D^+ Pi^- Pi^-) and B(B^- to D*^+ Pi^- Pi^-)

Description: The D{sub J}{sup 0} is a family of four orbitally excited mesons: D*{sub 2}(2460){sup 0}, D{sub 1}(2420){sup 0}, D{sub 1}(j = 1/2){sup -}, and D*{sub 0}(j = 1/2){sup 0}. This dissertation presents the measurements of the inclusive branching fractions, {Beta}(B{sup -} {yields} D*{sup +}{pi}{sup -}{pi}{sup -}) and {Beta}(B{sup -} {yields} D{sup +}{pi}{sup -}{pi}{sup -}). The D{sub J}{sup 0} provides an intermediate resonance for those two modes. The data used for this analysis consists of Runs 1-5 with total integrated luminosity of 343.38 fb{sup -1}, which is corresponding to 383.92 million B{bar B} pairs, provided by the BABAR detector at the PEP-II asymmetric B Factory. The values presented are: {Beta}(B{sup -} {yields} D{sup +}{pi}{sup -}{pi}{sup -}) = (1.12 {+-} 0.02 {+-} 0.08) x 10{sup -3}; {Beta}(B{sup -} {yields} D*{sup +}{pi}{sup -}{pi}{sup -}) = (1.67 {+-} 0.03 {+-} 0.13) x 10{sup -3}.
Date: July 17, 2007
Creator: Eschenburg, Vance Onno & U., /Mississippi
Partner: UNT Libraries Government Documents Department

Mesure du rapport d'embranchement et du facteur deforme de la d_sint_gration B0 to pilnu, et d_termination de |Vub| avec unetechnique de reconstruction rel_ch_e du neutrino

Description: The authors report the results of a study of the exclusive charmless semileptonic decay, B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}, undertaken with approximately 227 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector. The analysis uses events in which the signal B decays are reconstructed with an innovative loose neutrino reconstruction technique. They obtain partial branching fractions in 12 bins of q{sup 2}, the momentum transfer squared, from which they extract the f{sub +}(q{sup 2}) form-factor shape and the total branching fraction {Beta}(B{sup 0} {yields} {pi}{sup -}{ell}{sup +}{nu}) = (1.46 {+-} 0.07{sub stat} {+-} 0.08{sub syst}) x 10{sup -4}. Based on a recent unquenched lattice QCD calculation of the form factor in the range q{sup 2} > 16 GeV{sup 2}/c{sup 4}, they find the magnitude of the CKM matrix element |V{sub ub}| to be (4.1 {+-} 0.2{sub stat} {+-} 0.2{sub syst{sub -0.4}{sup +0.6}FF}) x 10{sup -3}, where the last uncertainty is due to the normalization of the form factor.
Date: July 17, 2007
Creator: Cote, David & U., /Montreal
Partner: UNT Libraries Government Documents Department

Search for the Rare Decay B to pi l+l- in the BaBar Experiment

Description: The rare decay B {yields} {pi}{ell}{sup +}{ell}{sup -} is the simplest manifestation of a b {yields} d{ell}{sup +}{ell}{sup -} flavor-changing neutral current (FCNC) process. This type of process only proceeds through penguin loop or box diagrams and is sensitive to physics at the electroweak scale. It can be used to constrain parameters of the Standard Model and its extensions. B {yields} {pi}{ell}{sup +}{ell}{sup -} events have not yet been observed; the branching fraction is expected to be an order of magnitude smaller than the measured branching fraction for the similar B {yields} K{ell}{sup +}{ell}{sup -} decay. Using 230 million B{bar B} meson pairs collected with the BABAR detector, we have done a search for the rare decay B {yields} {pi}{ell}{sup +}{ell}{sup -}. The data was produced in e+e? collision at the {Upsilon}(4S) resonance in the PEP-II collider between 1999 and 2004. Four exclusive B-meson decay modes have been reconstructed: B{sup +} {yields} {pi}{sup +}{ell}{sup +}{ell}{sup -} and B{sup 0} {yields} {pi}{sup 0}{ell}{sup +}{ell}{sup -}, where {ell}{sup +}{ell}{sup -} is either an electron pair (e{sup +}e{sup -}) or a muon pair ({mu}{sup +}{mu}{sup -}). We find no evidence for a signal, and we obtain upper limits on the branching fractions {Beta}. Assuming the isospin relation {Beta}(B{sup +} {yields} {pi}{sup +}{ell}{sup +}{ell}{sup -}) 2 x {sup {tau}}B{sup +}/{sup {tau}}B{sup 0} {Beta}(B{sup 0} {yields} {pi}{sup 0}{ell}{sup +}{ell}{sup -}), we obtain an upper limit at 90% confidence level on the lepton-flavor-averaged branching fraction of B {yields} {pi}{ell}{sup +}{ell}{sup -} to be {Beta}(B {yields} {pi}e{mu}) < 9.2 x 10{sup -8} at 90% C.L. We have also reconstructed two control modes B{sup +} {yields} {pi}{sup +}e{sup {+-}}{mu}{sup {-+}} and B{sup 0} {yields} {pi}{sup 0}e{sup {+-}}{mu}{sup {-+}} and we also obtain an upper limit at 90% confidence level on the lepton-flavor-violating decay B {yields} {pi}e{mu} of {Beta}(B ...
Date: July 17, 2007
Creator: Ofte, Ingrid & U., /Bergen
Partner: UNT Libraries Government Documents Department

Scientist-Teacher Partnerships as Professional Development: An Action Research Study

Description: SUBMITTED AS A DOCTORAL DISSERTATION IN COMPLETION OF REQUIREMENTS FOR THE DEGREE OF ED.D THROUGH WASHINGTON STATE UNIVERSITY. The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.
Date: April 17, 2009
Creator: Willcuts, Meredith H.
Partner: UNT Libraries Government Documents Department

Time Dependent CP Asymmetries and Branching RatioMeasurements in Charmless Three Body B Decays at BABAR

Description: In this work we presented measurements of CP violation and decay rates of B decays in final states not involving a charm quark in the final state. In particular, the time-dependent CP asymmetries of decays which proceed through b {yields} s elementary transition is a particularly sensitive probe of physics beyond the Standard Model. In fact, even if the precise measurements of CP conserving and CP violating processes show the success of the CKM picture of the flavour physics, the sector of b {yields} s transitions is still not strongly constrained and leaves room for new physics contributions. In particular, we considered the decays which have the cleanest theoretical prediction within the Standard Model: B{sup 0} {yields} {phi}K{sup 0} and B{sup 0} {yields} K{sub s}{sup 0}K{sub s}{sup 0}K{sub s}{sup 0} {beta}{sub eff}{sup SM} = 0.379. We examined the former with a completely new approach with respect to the past: the study of CP violation in the whole K{sup +}K{sup -}K{sup 0} phase space through a time-dependent Dalitz plot analysis. With this approach, we simultaneously measured the CP-violating asymmetries of the {phi}KJ{sup 0}, f{sub 0}(980)K{sup 0} resonant and K{sup +}K{sup -}K{sup 0} non-resonant contributions, avoiding one of the largest uncertainties which affected the previous measurements of B{sup 0} {yields} {phi}K{sup 0}. We find {beta}{sub eff}(B{sup 0} {yields} {phi}K{sup 0}) = 0.06 {+-} 0.16 {+-} 0.05, which is lower than the Standard Model expectation, but it is consistent with it within two standard deviations. Moreover, only a recently developed experimental technique, which allows the determination of the position of B decay vertex when no charged tracks are originating from it, has made possible the measurement of the time-dependent CP asymmetry in B{sup 0} {yields} K{sub s}{sup 0}K{sub s}{sup 0}K{sub s}{sup 0} decays. The mixing-induced CP parameter S in the Standard Model should ...
Date: July 17, 2007
Creator: Di Marco, Emanuele & U., /Rome
Partner: UNT Libraries Government Documents Department

ANALYSIS OF THE INTERACTION OF 300-Mev NEUTRONS WITH XENON

Description: An investigation of the interactions between 300-Mev neutrons and xenon was made by means of a cloud chamber in a pulsed magnetic field of 21,700 gauss placed in the neutron beam of the 184-inch Berkeley cyclotron. Eighty-seven negative pion events and 257 other stars were analyzed. In addition an experimental check was made on the energy of the incoming neutrons. Classification, identification, and angular and energy distributions of prongs associated with all events are presented. Interpretations of results are given.
Date: October 17, 1956
Creator: Morris, Richard Herbert.
Partner: UNT Libraries Government Documents Department

Measurements of Branching Fraction and CP Violation inB Meson Rare Decays to Final States containing eta or eta' Mesons in the BaBar Experiment at SLAC

Description: Note that the main goal of this thesis work is the measurement of the branching fractions, charge asymmetry, and Time-Dependent CP Violation in {eta}'K{sup 0} mode. All other measurements are reported here for completion because they are connected by similar physics arguments. They are part of the Milan analysis activity, done by undergraduate students. They should not be considered as done in this thesis work. The measurements of the two body-modes {eta}{eta}, {eta}{phi}, and {eta}'{phi} are used to determine a theoretical bound based on SU(3) flavor symmetry for the difference between SM prediction and the experimental measurements of CP violation parameters in b {yields} s loop-dominated modes. In general for this estimation we need to measure the branching fractions (or upper limits) of neutral B decays to two-body modes with {eta}', {eta}, {phi}, {omega}, {pi}{sup 0}, K{sup 0}, K*{sup 0} [13, 14, 15, 16]. There is an important issue related to the branching fractions of {eta}'K (charged and neutral) modes. Since the discover of B {yields} {eta}'K in 1997 [17] with high branching fraction (higher than expected), it was found that the corresponding mode with {eta} is suppressed. This fact was pointed out by Lipkin in 1991 [18]. In particular, using arguments concerning the {eta}-{eta}' mixing angle and the parity of K or K* we can say that {eta}'K and {eta}K* are enhanced, while {eta}K and {eta}'K* are suppressed. This scheme is experimentally verified. The branching fraction of all these modes are already measured, but the B{sup 0} {yields} {eta}K{sup 0}. So it is important to measure also this mode to complete the scenario. Finally we report on the measurements of the radiative modes B {yields} {eta}'K{gamma} and of the three-body mode B {yields} {eta}'{eta}'K. Both cases are good candidates to manifest effects due to NP in CP violations [19, ...
Date: July 17, 2007
Creator: Lazzaro, Alfio & U., /Milan
Partner: UNT Libraries Government Documents Department

Measurement of CKM-angle gamma with Charmed B0 Meson Decays

Description: This thesis reports measurements of the time-dependent CP asymmetries in fully reconstructed B{sup 0} {yields} (D{sup (*){-+}} and B{sup 0} {yields} D{sup {-+}} {rho}{sup {+-}}) decays in approximately 232 million {Upsilon}(4S) {yields} B{bar B} events, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center in California, as published in Ref. [14]. The phenomenon of CP violation allows one to distinguish between matter and antimatter, and, as such, is one of the essential ingredients needed to explain the apparent abundance of matter over antimatter in the universe. The Standard Model describes the observed elementary particles in terms of three generations of quarks and leptons, as well as the weak, electromagnetic, and strong interactions between them. In the Standard Model, CP violation is incorporated in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the weak interactions between the quarks. The weak interactions between quarks are described by coupling constants that are functions of three real parameters and one irreducible complex phase. The magnitude of all CP violating effects in the Standard Model is related to this complex phase. The measurement of the CP violating phase of the CKM matrix is an important part of the present scientific program in particle physics. Violation of the CP symmetry manifests itself as a non-zero area of the Unitarity Triangle. The Unitarity Triangle needs to be overconstrained by experimental measurements in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. No stringent measurement of the CKM-angle {gamma} is yet available.
Date: July 17, 2007
Creator: Baak, Max Arjen & /Vrije U., Amsterdam
Partner: UNT Libraries Government Documents Department

Wide Bandgap Extrinsic Photoconductive Switches

Description: Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.
Date: January 17, 2012
Creator: Sullivan, J S
Partner: UNT Libraries Government Documents Department

Measurement of D0 lifetime with the BaBar detector

Description: This work is the result of the researchers carried out during a three years Ph.D. period in the BABAR experiment. The first chapter consists in an introduction to the theoretical aspects of the D{sup 0} meson lifetime determination and CP violation parameters, as well as an overview of the CP violation in the B sector, which is the main topic of the experiment. The description of the experimental apparatus follows with particular attention to the Silicon Vertex Tracker detector, the most critical detector for the determination of decay vertices and thus of lifetimes and time dependent CP violation asymmetries. In the fourth chapter the operation and running of the vertex detector is described, as a result from the experience as Operation Manager of the SVT, with particular attention to the safety of the device and the data quality assurance. The last chapter is dedicated to the determination of the D{sup 0} meson lifetime with the BABAR detector, which is the main data analysis carried out by the candidate. The analysis is characterized by the selection of an extremely pure sample of D{sup 0} mesons for which the decay flight length and proper time is reconstructed. The description of the unbinned maximum likelihood fit follows, as well as the discussion of the possible sources of systematic uncertainties. In the appendix is also presented a preliminary study of a possible development regarding the determination of mixing and CP violation parameters for the D{sup 0} meson.
Date: December 17, 2009
Creator: Simi, Gabriele & /SLAC, /Pisa U.
Partner: UNT Libraries Government Documents Department

Measurement of the B-bar 0 to D^* l ^- nu-bar Branching Fraction with a Partial Reconstruction Technique

Description: Presented is a precise measurement of the {bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}} branching fraction using 81.47 fb{sup -1} of data collected with the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring at the Stanford Linear Accelerator Center. The measurement was performed by partially reconstructing the D*{sup +} meson from {bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}} decays using only the soft pion of the D*{sup +} {yields} D{sup 0}{pi}{sup +} decay to reconstruct its four vector. The branching fraction was measured to be {Beta}({bar B}{sup 0} {yields} D*{sup +}{ell}{sup -}{bar {nu}}{sub {ell}}) = (4.91 {+-} 0.01{sub stat} {+-} 0.15{sub syst})%.
Date: December 17, 2009
Creator: Sonnek, Peter & U., /Mississippi
Partner: UNT Libraries Government Documents Department

Two-dimensional nuclear magnetic resonance of quadrupolar systems

Description: This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.
Date: September 17, 1997
Creator: Wang, Shuanhu
Partner: UNT Libraries Government Documents Department

Fundamental studies of supported bimetallic catalysts by NMR spectroscopy

Description: Various hydrogenation reactions on transition metals are important commercially whereas certain hydrogenolysis reactions are useful from fundamental point of view. Understanding the hydrogen mobility and kinetics of adsorption-desorption of hydrogen is important in understanding the mechanisms of such reactions involving hydrogen. The kinetics of hydrogen chemisorption was studied by means of selective excitation NMR on silica supported Pt, Rh and Pt-Rh catalysts. The activation energy of hydrogen desorption was found to be lower on silica supported Pt catalysts as compared to Rh and Pt-Rh catalysts. It was found that the rates of hydrogen adsorption and desorption on Pt-Rh catalyst were similar to those on Rh catalyst and much higher as compared to Pt catalyst. The Ru-Ag bimetallic system is much simpler to study than the Pt-Rh system and serves as a model system to characterize more complicated systems such as the K/Ru system. Ag was found to decrease the amounts of adsorbed hydrogen and the hydrogen-to-ruthenium stoichiometry. Ag reduced the populations of states with low and intermediate binding energies of hydrogen on silica supported Ru catalyst. The rates of hydrogen adsorption and desorption were also lower on silica supported Ru-Ag catalyst as compared to Ru catalyst. This report contains introductory information, the literature review, general conclusions, and four appendices. An additional four chapters and one appendix have been processed separately for inclusion on the data base.
Date: October 17, 1996
Creator: Savargaonkar, N.
Partner: UNT Libraries Government Documents Department

Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

Description: This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.
Date: December 17, 1999
Creator: Zanni, Martin T.
Partner: UNT Libraries Government Documents Department