22,073 Matching Results

Search Results

Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

Description: The goal of the Q-weak experiment is to make a measurement of the proton's weak charge Q{sub W}{sup p} = 1 - 4 sin{sup 2}({theta}{sub W}) to an accuracy of {approx} 4%. This would represent a {approx} 0.3% determination of the weak mixing angle sin{sup 2}({theta}{sub W}) at low energy. The measurement may be used for a precision test of the Standard Model (SM) prediction on the running of sin{sup 2}({theta}{sub W}) with energy scale. The Q-weak experiment operates at Thomas Jefferson National Accelerator Facility (Jefferson Lab). The experiment determines Q{sub W}{sup p} by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q{sup 2} = 0.026 (GeV/c){sup 2} and forward angles (?8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.
Date: May 31, 2012
Creator: Pan, Jie
Partner: UNT Libraries Government Documents Department

Transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates: Catalysts for asymmetric olefin hydroamination and acceptorless alcohol decarbonylation

Description: The research presented and discussed in this dissertation involves the synthesis of transition metal complexes of oxazolinylboranes and cyclopentadienyl-bis(oxazolinyl)borates, and their application in catalytic enantioselective olefin hydroamination and acceptorless alcohol decarbonylation. Neutral oxazolinylboranes are excellent synthetic intermediates for preparing new borate ligands and also developing organometallic complexes. Achiral and optically active bis(oxazolinyl)phenylboranes are synthesized by reaction of 2-lithio-2-oxazolide and 0.50 equiv of dichlorophenylborane. These bis(oxazolinyl)phenylboranes are oligomeric species in solid state resulting from the coordination of an oxazoline to the boron center of another borane monomer. The treatment of chiral bis(oxazolinyl)phenylboranes with sodium cyclopentadienide provide optically active cyclopentadienyl-bis(oxazolinyl)borates H[PhB(C{sub 5}H{sub 5})(Ox{sup R}){sub 2}] [Ox{sup R} = Ox{sup 4S-iPr,Me2}, Ox{sup 4R-iPr,Me2}, Ox{sup 4S-tBu]}. These optically active proligands react with an equivalent of M(NMe{sub 2}){sub 4} (M = Ti, Zr, Hf) to afford corresponding cyclopentadienyl-bis(oxazolinyl)borato group 4 complexes {PhB(C{sub 5}H{sub 4})(Ox{sup R}){sub 2}}M(NMe{sub 2}){sub 2} in high yields. These group 4 compounds catalyze cyclization of aminoalkenes at room temperature or below, providing pyrrolidine, piperidine, and azepane with enantiomeric excesses up to 99%. Our mechanistic investigations suggest a non-insertive mechanism involving concerted C−N/C−H bond formation in the turnover limiting step of the catalytic cycle. Among cyclopentadienyl-bis(oxazolinyl)borato group 4 catalysts, the zirconium complex {PhB(C{sub 5}H{sub 4})(Ox{sup 4S-iPr,Me2}){sub 2}}Zr(NMe{sub 2}){sub 2} ({S-2}Zr(NMe{sub 2}){sub 2}) displays highest activity and enantioselectivity. Interestingly, {S-2}Zr(NMe{sub 2}){sub 2} also desymmetrizes olefin moieties of achiral non-conjugated aminodienes and aminodiynes during cyclization. The cyclization of aminodienes catalyzed by {S-2}Zr(NMe{sub 2}){sub 2} affords diastereomeric mixture of cis and trans cylic amines with high diasteromeric ratios and excellent enantiomeric excesses. Similarly, the desymmetrization of alkyne moieties in {S-2}Zr(NMe{sub 2}){sub 2}-catalyzed cyclization of aminodiynes provides corresponding cyclic imines bearing quaternary stereocenters with enantiomeric excesses up to 93%. These stereoselective desymmetrization reactions are significantly affected by concentration of the substrate, temperature, and the presence of a ...
Date: December 17, 2012
Creator: Manna, Kuntal
Partner: UNT Libraries Government Documents Department

Theory of spin-fluctuation induced superconductivity in iron-based superconductors

Description: In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum transfer. This calculated intrinsic anisotropy exists both in the normal and in the superconducting state, which naturally explains ...
Date: August 15, 2011
Creator: Zhang, Junhua
Partner: UNT Libraries Government Documents Department

Study of the Two-pion Photoproduction on the Deuteron

Description: Understanding the structure of baryons in terms of the fundamental interaction of the constituent quarks and gluons is one of the primary challenges in strong interaction physics. This interaction is governed by Quantum Chromodynamics (QCD), which is a theory for understanding the dynamics of strong. QCD displays the asymptotic freedom of hadrons at very short distances and also the confinement of quarks and gluons inside hadrons. However, solutions of this QCD theory in the non-perturbative domain of the interaction are extremely difficult to achieve, mainly because confinement happens on the hadronic scale on which the coupling constant is large and prevents any perturbative approach. Thus leaving us with strategies such as lattice QCD or formulating QCD sum rules to get around this problem. In exclusive hadron production the yN interaction is recognized for being a powerful method for investigating hadrons and the mysteries that still exist within the strong interaction. From reactions with the nucleon, the strong interaction can be investigated through the transition amplitudes to the N and Delta resonances. More specifically, if an electromagnetic interaction is well known then the intermediate resonance states may be evaluated through meson photoproduction. To gain more detailed insight into this interaction, we look to probe the baryon structure of the nucleon and the photo-excited resonance decays through photon scattering off a deuteron producing two pions in the final state. This photoproduction process off the deuteron will be used to investigate known baryon resonances in the two pion channel. The two pion final state will be investigated for unraveling new information into the photo-coupling strengths. We want to explore final state interactions, search for properties of known resonances, and to explore the possibility of seeing missing states that are predicted by quark models but have not yet been found experimentally. Using the CEBAF ...
Date: December 1, 2012
Creator: Graham, Lewis P.
Partner: UNT Libraries Government Documents Department

The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

Description: In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also ...
Date: May 15, 2011
Creator: Zhuo, Ye
Partner: UNT Libraries Government Documents Department

Adaptations in Electronic Structure Calculations in Heterogeneous Environments

Description: Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e#14;ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti#12;c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi#12;cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di#11;erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.
Date: November 29, 2011
Creator: Talamudupula, Sai
Partner: UNT Libraries Government Documents Department

Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

Description: This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.
Date: July 27, 2012
Creator: Ebert, Christopher Hysjulien
Partner: UNT Libraries Government Documents Department

Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

Description: This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl{sub 2}Ba{sub 2}CuO{sub 6+{delta}} (Tl2201) T{sub c,max} {approx} 95 K and (Bi{sub 1.35}Pb{sub 0.85})(Sr{sub 1.47}La{sub 0.38})CuO{sub 6+{delta}} (Bi2201) T{sub c,max} {approx} 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to ({pi},0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher T{sub c} Tl2201. The second study looks at the different ways of doping Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO{sub 2}/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with a charge density wave (CDW) origin of the ...
Date: December 15, 2010
Creator: Palczewski, Ari Deibert
Partner: UNT Libraries Government Documents Department

First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

Description: Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e#14;ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.
Date: July 20, 2012
Creator: Hahn, Steven
Partner: UNT Libraries Government Documents Department

Hard photo-disintegration of proton pairs in {sup 3}He nuclei

Description: Extensive studies of high-energy deuteron photodisintegration over the past two decades have probed the limits of meson-baryon descriptions of nuclei and nuclear reactions. At high energies, photodisintegration cross sections have been shown to scale as a power law in s (the total cm energy squared), which suggests that quarks are the relevant degrees of freedom. In an attempt to more clearly identify the underlying dynamics at play, JLab/Hall A experiment 03-101 measured the hard photodisintegration of {sup 3}He into p-p and p-d pairs at θ{sub c.m.} = 90◦ and E{sub {gamma}} = 0.8 - 4.7 GeV. The basic idea is that the measurement should be able to test theoretical predictions for the relative size of pp versus pn disintegrations. This document presents data for the energy dependence of the high energy 90◦ c.m. photodisintegration of {sup3]He: dσ/dt(γ + {sup3}He → p + p + n{sub spectator}), and dσ/dt(γ + {sup 3}He → p + d). The cross sections were observed to scale as a function of s{sup −n} where n was found to be 11.1±0.1 and 17.4±0.5 for the two reactions respectively. The degree of scaling found for d#27;{sigma}/dt (γ + {sup 3}He → p + d) is the highest degree of scaling ever observed in a nuclear process. The onset of the observed scaling are at photon energy of 2.2 GeV for the pp breakup and 0.7 GeV for the pd breakup. The magnitude of the invariant cross section for pp pair breakup was found to be dramatically lower than for the breakup of pn pairs and theoretical predictions. At energies below the scaling region, the scaled cross section was found to present a strong energy-dependent structure not observed in the pn breakup. The data indicate a transition from three-nucleon hadronic photodisintegration processes at low energies to two-nucleon quark-dominated ...
Date: September 1, 2011
Creator: Pomerantz, Ishay
Partner: UNT Libraries Government Documents Department

Helicity Asymmetry Measurement for pi^0 Photoproduction with FROST

Description: This thesis reports on the first helicity asymmetry measurement for single neutral pion photoproduction using the CLAS detector in Hall B at the Thomas Jefferson National Accelerator Facility (JLab). This measurement used longitudinally polarized protons and circularly polarized photons at energies between 350 MeV and 2400 MeV. The experimental results are compared to three available model calculations.
Date: August 1, 2011
Creator: Iwamoto, Hideko
Partner: UNT Libraries Government Documents Department

Structural and magnetic properties and superconductivity in Ba(Fe{sub 1-x}TM{sub x}){sub 2}As{sub 2}

Description: We studied the effects on structural and magnetic phase transitions and the emergence of superconductivity in transition metal substituted BaFe{sub 2}As{sub 2}. We grew four series of Ba(Fe{sub 1-x}TM{sub x}){sub 2}As{sub 2} (TM=Ru, Mn, Co+Cr and Co+Mn) and characterized them by crystallographic, magnetic and transport measurements. We also subjected Ba(Fe{sub 1-x}Cr{sub x}){sub 2}As{sub 2} and Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} to heat treatment to explore what changes might be induced.
Date: July 23, 2012
Creator: Thaler, Alexander
Partner: UNT Libraries Government Documents Department

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

Description: The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.
Date: August 28, 2012
Creator: Kim, Min Gyu
Partner: UNT Libraries Government Documents Department

Self-assembled pentablock copolymers for selective and sustained gene delivery

Description: The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.
Date: May 15, 2011
Creator: Zhang, Bingqi
Partner: UNT Libraries Government Documents Department

Single crystal Processing and magnetic properties of gadolinium nickel

Description: GdNi is a rare earth intermetallic material that exhibits very interesting magnetic properties. Spontaneous magnetostriction occurs in GdNi at T{sub C}, on the order of 8000ppm strain along the c-axis and only until very recently the mechanism causing this giant magnetostriction was not understood. In order to learn more about the electronic and magnetic structure of GdNi, single crystals are required for anisotropic magnetic property measurements. Single crystal processing is quite challenging for GdNi though since the rare-earth transition-metal composition yields a very reactive intermetallic compound. Many crystal growth methods are pursued in this study including crucible free methods, precipitation growths, and specially developed Bridgman crucibles. A plasma-sprayed Gd{sub 2}O{sub 3} W-backed Bridgman crucible was found to be the best means of GdNi single crystal processing. With a source of high-quality single crystals, many magnetization measurements were collected to reveal the magnetic structure of GdNi. Heat capacity and the magnetocaloric effect are also measured on a single crystal sample. The result is a thorough report on high quality single crystal processing and the magnetic properties of GdNi.
Date: November 2, 2012
Creator: Shreve, Andrew John
Partner: UNT Libraries Government Documents Department

Solid state NMR method development and studies of biological and biomimetic nanocomposites

Description: This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites. Meanwhile, we have developed new methods to achieve broadband high resolution NMR and improve the accuracy of inter-nuclear distance measurements involving ...
Date: February 7, 2011
Creator: Hu, Yanyan
Partner: UNT Libraries Government Documents Department

Reducing the losses of optical metamaterials

Description: The field of metamaterials is driven by fascinating and far-reaching theoretical visions, such as perfect lenses, invisibility cloaking, and enhanced optical nonlinearities. However, losses have become the major obstacle towards real world applications in the optical regime. Reducing the losses of optical metamaterials becomes necessary and extremely important. In this thesis, two approaches are taken to reduce the losses. One is to construct an indefinite medium. Indefinite media are materials where not all the principal components of the permittivity and permeability tensors have the same sign. They do not need the resonances to achieve negative permittivity, {var_epsilon}. So, the losses can be comparatively small. To obtain indefinite media, three-dimensional (3D) optical metallic nanowire media with different structures are designed. They are numerically demonstrated that they are homogeneous effective indefinite anisotropic media by showing that their dispersion relations are hyperbolic. Negative group refraction and pseudo focusing are observed. Another approach is to incorporate gain into metamaterial nanostructures. The nonlinearity of gain is included by a generic four-level atomic model. A computational scheme is presented, which allows for a self-consistent treatment of a dispersive metallic photonic metamaterial coupled to a gain material incorporated into the nanostructure using the finite-difference time-domain (FDTD) method. The loss compensations with gain are done for various structures, from 2D simplified models to 3D realistic structures. Results show the losses of optical metamaterials can be effectively compensated by gain. The effective gain coefficient of the combined system can be much larger than the bulk gain counterpart, due to the strong local-field enhancement.
Date: December 15, 2010
Creator: Fang, Anan
Partner: UNT Libraries Government Documents Department

Rhodium mediated bond activation: from synthesis to catalysis

Description: Recently, our lab has developed monoanionic tridentate ligand, To{sup R}, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the To{sup R}-supported rhodium compounds. Tl[To{sup R}] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[To{sup M}] with [Rh({mu}-Cl)(CO)]{sub 2} and [Rh({mu}- Cl)(COE)]{sub 2} gives To{sup M}Rh(CO){sub 2} (2.2) and To{sup M}RhH({eta}{sup 3}-C{sub 8}H{sub 13}) (3.1) respectively while Tl[To{sup P}] with [Rh({mu}-Cl)(CO)]{sub 2} affords To{sup P}Rh(CO){sub 2} (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product stoichiometrically. 3.1 reacts with various primary alcohols to give the decarbonylation dihydride complex To{sup M}Rh(H){sub 2}CO (4.1). 4.1 shows catalytic reactivity for primary alcohol decarbonylation under a photolytic condition. Meanwhile, 2.2 has been found to be more reactive than 4.1 for catalytic alcohol decarbonylation under the same condition. Various complexes and primary alcohols have been investigated as well. The proposed mechanism is based on the stochiometric reactions of the possible metal and organic intermediates. Primary amines, hypothesized to undergo a similar reaction pathway, have been verified to give dehydrogenative coupling product, imines. In the end, the well-developed neutral tridentate Tpm ...
Date: March 6, 2012
Creator: Ho, Hung-An
Partner: UNT Libraries Government Documents Department

United abominations: Density functional studies of heavy metal chemistry

Description: Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.
Date: April 2, 2012
Creator: Schoendorff, George
Partner: UNT Libraries Government Documents Department

Unorthodox theoretical methods

Description: The use of the ReaxFF force field to correlate with NMR mobilities of amine catalytic substituents on a mesoporous silica nanosphere surface is considered. The interfacing of the ReaxFF force field within the Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM) method, in order to replicate earlier SIMOMM published data and to compare with the ReaxFF data, is discussed. The development of a new correlation consistent Composite Approach (ccCA) is presented, which incorporates the completely renormalized coupled cluster method with singles, doubles and non-iterative triples corrections towards the determination of heats of formations and reaction pathways which contain biradical species.
Date: June 20, 2012
Creator: Nedd, Sean
Partner: UNT Libraries Government Documents Department

SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A^p_1, at Large Bjorken x

Description: The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid {sup 14}NH{sub 3} polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetries measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A{sub 1}{sup p} and A{sub 2}{sup p} as well as the spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. This work addresses the extraction of the virtual Compton asymmetry A{sub 1}{sup p} in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q{sup 2} bins from 1.9 to 4.7 GeV{sup 2}.
Date: May 1, 2012
Creator: Mulholland, Jonathan
Partner: UNT Libraries Government Documents Department

Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis

Description: This thesis outlines advancements in Raman scatter enhancement techniques by applying evanescent fields, standing-waves (waveguides) and surface enhancements to increase the generated mean square electric field, which is directly related to the intensity of Raman scattering. These techniques are accomplished by employing scanning angle Raman spectroscopy and surface enhanced Raman spectroscopy. A 1064 nm multichannel Raman spectrometer is discussed for chemical analysis of lignin. Extending dispersive multichannel Raman spectroscopy to 1064 nm reduces the fluorescence interference that can mask the weaker Raman scattering. Overall, these techniques help address the major obstacles in Raman spectroscopy for chemical analysis, which include the inherently weak Raman cross section and susceptibility to fluorescence interference.
Date: March 14, 2013
Creator: Meyer, Matthew W.
Partner: UNT Libraries Government Documents Department

Virtual tool mark generation for efficient striation analysis in forensic science

Description: In 2009, a National Academy of Sciences report called for investigation into the scienti#12;c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di#11;erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served to con#12;rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de#12;nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5#14; and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the ...
Date: November 16, 2012
Creator: Ekstrand, Laura
Partner: UNT Libraries Government Documents Department