Search Results

Nucleon decay in GUT and nonGUT SUSY models

Description: I first emphasize the importance of searching for nucleon decay in the context of supersymmetric models. The status of minimal SUSY SU(5) model is reviewed, which can be definitively ruled out by a combination of superKamiokande andLEP-2 experiments. Non-minimal models may provide some suppression in the nucleon decay rates, but there is still a good chance for superKamiokande. I point out that the operators suppressed even by the Planck-scale are too large. We need a suppression mechanism for the operators at the level of 10-7, and the mechanism, I argue, may well be a flavor symmetry. A particular example predicts p --> K0e+ to be the dominant mode which does not arise in GUT models.
Date: June 30, 1996
Creator: Murayama, Hitoshi
Partner: UNT Libraries Government Documents Department

Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow

Description: Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO{sub 2} geologic storage that predicts not only CO{sub 2} migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO{sub 2} injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO{sub 2} injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km x 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO{sub 2} was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO{sub 2} plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.
Date: April 15, 2009
Creator: Yamamoto, H.; Zhang, K.; Karasaki, K.; Marui, A.; Uehara, H. & Nishikawa, N.
Partner: UNT Libraries Government Documents Department

Numerical simulation experiments on the long-term evolution of a CO2 plume under a sloping caprock

Description: We have used the TOUGH2-MP/ECO2N code to perform numerical simulation studies of the long-term behavior of CO{sub 2} stored in an aquifer with a sloping caprock. This problem is of great practical interest, and is very challenging due to the importance of multi-scale processes. We find that the mechanism of plume advance is different from what is seen in a forced immiscible displacement, such as gas injection into a water-saturated medium. Instead of pushing the water forward, the plume advances because the vertical pressure gradients within the plume are smaller than hydrostatic, causing the water column to collapse at the plume tip. Gas saturations and updip CO{sub 2} fluxes are nearly constant, independent of time and position, in the upper, mobile portions of the plume. The CO{sub 2} plume becomes thinner as it advances, yet the speed of advancement remains constant over the entire simulation period of up to 400 years, with migration distances of more than 80 km. Our simulation includes dissolution of CO{sub 2} into the aqueous phase and associated density increase, and molecular diffusion. However, no convection develops in the aqueous phase because it is suppressed by the relatively coarse (sub-)horizontal gridding required in a regional-scale model. A first crude sub-grid-scale model was implemented to represent convective enhancement of CO{sub 2} dissolution. This process is found to greatly reduce the thickness of the CO{sub 2} plume, but does not affect the speed of plume advancement.
Date: August 15, 2009
Creator: Pruess, Karsten
Partner: UNT Libraries Government Documents Department

Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

Description: Dissolution of silica, silicate, and calcite minerals in the presence of a chelating agent (NTA) at a high pH has been successfully performed in the laboratory using a high-temperature flow reactor. The mineral dissolution and porosity enhancement in the laboratory experiment has been reproduced by reactive transport simulation using TOUGHREACT. The chemical stimulation method has been applied by numerical modeling to a field geothermal injection well system, to investigate its effectiveness. Parameters from the quartz monzodiorite unit at the Enhanced Geothermal System (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase minerals, and avoids precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well.
Date: February 1, 2009
Creator: Xu, Tianfu; Rose, Peter; Fayer, Scott & Pruess, Karsten
Partner: UNT Libraries Government Documents Department

Observation of Two-source Interference in the Photoproduction Reaction AuAu --> AuAu rho 0

Description: In ultra-peripheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a {rho}{sup 0}. The {rho}{sup 0} production occurs in two well-separated (median impact parameters of 20 and 40 fermi for the cases considered here) nuclei, so the system forms a 2-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing {rho}{sup 0} production. Since the {rho}{sup 0} decays before the production amplitudes from the two sources can overlap, the two-pion system can only be described with an entangled non-local wave function, and is thus an example of the Einstein-Podolsky-Rosen paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference is 87% {+-} 5%(stat.) {+-} 8% (syst.) of the expected level. This translates into a limit on decoherence due to wave function collapse or other factors, of 23% at the 90% confidence level.
Date: March 2, 2009
Creator: Coll, STAR
Partner: UNT Libraries Government Documents Department

Observed 1970-2005 cooling of summer daytime temperatures in coastal California

Description: The study evaluated 1948-2004 summer (JJA) mean monthly air temperatures for two California air basins: SoCAB and SFBA. The study focuses on the more rapid post-1970 warming period, and its daily T{sub min} and T{sub max} values were used to produce average monthly values and spatial distributions of trends for each air basins. Additional analyses included T{sub D} values at two NWS sites, SSTs, NCEP reanalysis sea-level pressures, and GCM T{sub ave}-values. Results for all California COOP sites together showed increased JJA T{sub ave}-values; asymmetric warming, as T{sub min}-values increase faster than T{sub max}-values; and thus decreased DTR values. The spatial distribution of observed SoCAB and SFBA T{sub max} values exhibited a complex pattern, with cooling in low-elevation coastal-areas open to marine air penetration and warming at inland areas. Results also showed that decreased DTR values in the valleys arose from small increases at 'inland' sites combined with large decreases at 'coastal' sites. Previous studies suggest that cooling JJA T{sub max}-values in coastal California were due to increased irrigation, coastal upwelling, or cloud cover, while the current hypothesis is that they arises from GHG-induced global-warming of 'inland' areas, which results in increased sea breeze flow activity. Sea level pressure trends showed increases in the oceanic Pacific High and decreases in the central-California Thermal Low. The corresponding gradient thus showed a trend of 0.02 hPa 100-km{sup -1} decade{sup -1}, supportive of the hypothesis of increased sea breeze activity. Trends in T{sub D} values showed a larger value at coastal SFO than at inland SEC, which indicative of increased sea breeze activity; calculated SST trends (0.15 C decade{sup -1}) could also have increase T{sub D}-values. GCM model Tave-values showed warming that decreases from 0.13 C decade{sup -1} at inland California to 0.08 C decade{sup -1} at coastal areas. Significant societal impacts may ...
Date: May 15, 2009
Creator: Lebassi, B.; Gonzalez, J.; Fabris, D.; Maurer, E.; Miller, N.; Milesi, C. et al.
Partner: UNT Libraries Government Documents Department

Occam's Razor and Petascale Visual Data Analysis

Description: One of the central challenges facing visualization research is how to effectively enable knowledge discovery. An effective approach will likely combine application architectures that are capable of running on today?s largest platforms to address the challenges posed by large data with visual data analysis techniques that help find, represent, and effectively convey scientifically interesting features and phenomena.
Date: June 12, 2009
Creator: Bethel, E. Wes; Johnson, Chris; Ahern, Sean; Bell, John; Bremer, Peer-Timo; Childs, Hank et al.
Partner: UNT Libraries Government Documents Department

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

Description: A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.
Date: July 15, 2009
Creator: Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G. et al.
Partner: UNT Libraries Government Documents Department

On a solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses

Description: The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combinations of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage and previous attempts to solve this problem have been largely disappointing. Here we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semi-solid processing is used to optimize the volume fraction, morphology, and size of second phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of {approx} 2 {micro}m, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude making these 'designed' composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems.
Date: January 9, 2009
Creator: Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L. & Ritchie, Robert O.
Partner: UNT Libraries Government Documents Department

On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage

Description: If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO{sub 2} would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO{sub 2}. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO{sub 2} ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.
Date: July 1, 2009
Creator: Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T. & Birkholzer, J.T.
Partner: UNT Libraries Government Documents Department

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent

Description: Dissolution of silica and calcite in the presence of a chelating agent (NTA) at a high pH was successfully demonstrated in laboratory experiments using a high-temperature flow reactor. (Note that the term 'silica' used here includes amorphous silica, quartz, and silicate glass bead). The mineral dissolution and associated porosity enhancement in the experiments were reproduced by reactive transport modeling using TOUGHREACT. The chemical stimulation method was applied by numerical modeling to a field geothermal injection well system to investigate its effectiveness. Parameters applicable to the quartz monzodiorite unit at the Enhanced Geothermal Systems (EGS) site at Desert Peak (Nevada) were used. Results indicate that the injection of a high pH chelating solution results in dissolution of both calcite and plagioclase, while avoiding precipitation of calcite at high temperature conditions. Consequently reservoir porosity and permeability can be enhanced especially near the injection well. Injection at a lower temperature of 120 C (over 160 C in the base-case) results in a porosity increase that is smaller close to the injection point, but extends to a larger radial distance. A slower kinetic rate results in less aggressive mineral dissolution close to the injection point and larger extent along the flow path, which is favorable for chemical stimulation.
Date: May 1, 2009
Creator: Xu, T.; Rose, P.; Fayer, S. & Pruess, K.
Partner: UNT Libraries Government Documents Department

On the fracture toughness of advanced materials

Description: Few engineering materials are limited by their strength; rather they are limited by their resistance to fracture or fracture toughness. It is not by accident that most critical structures, such as bridges, ships, nuclear pressure vessels and so forth, are manufactured from materials that are comparatively low in strength but high in toughness. Indeed, in many classes of materials, strength and toughness are almost mutually exclusive. In the first instance, such resistance to fracture is a function of bonding and crystal structure (or lack thereof), but can be developed through the design of appropriate nano/microstructures. However, the creation of tough microstructures in structural materials, i.e., metals, polymers, ceramics and their composites, is invariably a compromise between resistance to intrinsic damage mechanisms ahead of the tip of a crack (intrinsic toughening) and the formation of crack-tip shielding mechanisms which principally act behind the tip to reduce the effective 'crack-driving force' (extrinsic toughening). Intrinsic toughening is essentially an inherent property of a specific microstructure; it is the dominant form of toughening in ductile (e.g., metallic) materials. However, for most brittle (e.g., ceramic) solids, and this includes many biological materials, it is largely ineffective and toughening conversely must be developed extrinsically, by such shielding mechanisms as crack bridging. From a fracture mechanics perspective, this results in toughening in the form of rising resistance-curve behavior where the fracture resistance actually increases with crack extension. The implication of this is that in many biological and high-strength advanced materials, toughness is developed primarily during crack growth and not for crack initiation. This is an important realization yet is still rarely reflected in the way that toughness is measured, which is invariably involves the use of single-value (crack-initiation) parameters such as the fracture toughness K{sub Ic}.
Date: November 24, 2008
Creator: Launey, Maximilien E. & Ritchie, Robert O.
Partner: UNT Libraries Government Documents Department

On the importance of nuclear quantum motions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy of molecules

Description: We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.
Date: February 26, 2009
Creator: Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J. & Prendergast, David
Partner: UNT Libraries Government Documents Department

On the Ionization Energies of C4H3 Isomers

Description: We have conducted a combined experimental and theoretical study on the formation of distinct isomers of resonantly stabilized free radicals, C4H3, which are important intermediates in the formation of polycyclic aromatic hydrocarbons in combustion flames and possibly in the interstellar medium. Our study utilized laser ablation of graphite in combination with seeding the ablated species in neat methylacetylene gas which also acted as a reagent. Photoionization efficiency (PIE) curves were recorded of the C4H3 isomers at the Advanced Light Source from 8.0 to 10.3 eV. The experimental PIE curve was compared with theoretical ones suggesting the formation of four C4H3 radicals: two acyclic structures i-C4H3 [1] and E/Z-n-C4H3 [2E/2Z]and two cyclic isomers 3 and 4. These molecules are likely formed via an initial addition of ground state carbon atoms to the carbon-carbon triple bond of the methylacetylene molecule followed by isomerization via hydrogen migrations and ring opening and emission of atomic hydrogen from these intermediates.
Date: September 16, 2009
Creator: Kaiser, Ralf I.; Mebel, Alexander; Kostko, Oleg & Ahmed, Musahid
Partner: UNT Libraries Government Documents Department

On the role of Mn(IV) vacancies in the photoreductive dissolution of hexagonal birnessite

Description: Photoreductive dissolution of layer type Mn(IV) oxides (birnessite) under sunlight illumination to form soluble Mn(II) has been observed in both field and laboratory settings, leading to a consensus that this process is a key driver of the biogeochemical cycling of Mn in the euphotic zones of marine and freshwater ecosystems. However, the underlying mechanisms for the process remain unknown, although they have been linked to the semiconducting characteristics of hexagonal birnessite, the ubiquitous Mn(IV) oxide produced mainly by bacterial oxidation of soluble Mn(II). One of the universal properties of this biogenic mineral is the presence of Mn(IV) vacancies, long-identified as strong adsorption sites for metal cations. In this paper, the possible role of Mn vacancies in photoreductive dissolution is investigated theoretically using quantum mechanical calculations based on spin-polarized density functional theory (DFT). Our DFT study demonstrates unequivocally that Mn vacancies significantly reduce the band-gap energy for hexagonal birnessite relative to a hypothetical vacancy-free MnO{sub 2} and thus would increase the concentration of photo-induced electrons available for Mn(IV) reduction upon illumination of the mineral by sunlight. Calculations of the charge distribution in the presence of vacancies, although not fully conclusive, show a clear separation of photo-induced electrons and holes, implying a slow recombination of these charge-carriers that facilitates the two-electron reduction of Mn(IV) to Mn(II).
Date: June 1, 2009
Creator: Kwon, K.D.; Refson, K. & Sposito, G.
Partner: UNT Libraries Government Documents Department

Optimization and Performance Modeling of Stencil Computations on Modern Microprocessors

Description: Stencil-based kernels constitute the core of many important scientific applications on blockstructured grids. Unfortunately, these codes achieve a low fraction of peak performance, due primarily to the disparity between processor and main memory speeds. In this paper, we explore the impact of trends in memory subsystems on a variety of stencil optimization techniques and develop performance models to analytically guide our optimizations. Our work targets cache reuse methodologies across single and multiple stencil sweeps, examining cache-aware algorithms as well as cache-oblivious techniques on the Intel Itanium2, AMD Opteron, and IBM Power5. Additionally, we consider stencil computations on the heterogeneous multicore design of the Cell processor, a machine with an explicitly managed memory hierarchy. Overall our work represents one of the most extensive analyses of stencil optimizations and performance modeling to date. Results demonstrate that recent trends in memory system organization have reduced the efficacy of traditional cache-blocking optimizations. We also show that a cache-aware implementation is significantly faster than a cache-oblivious approach, while the explicitly managed memory on Cell enables the highest overall efficiency: Cell attains 88% of algorithmic peak while the best competing cache-based processor achieves only 54% of algorithmic peak performance.
Date: June 1, 2007
Creator: Datta, Kaushik; Kamil, Shoaib; Williams, Samuel; Oliker, Leonid; Shalf, John & Yelick, Katherine
Partner: UNT Libraries Government Documents Department

Optimization of a Lattice Boltzmann Computation on State-of-the-Art Multicore Platforms

Description: We present an auto-tuning approach to optimize application performance on emerging multicore architectures. The methodology extends the idea of search-based performance optimizations, popular in linear algebra and FFT libraries, to application-specific computational kernels. Our work applies this strategy to a lattice Boltzmann application (LBMHD) that historically has made poor use of scalar microprocessors due to its complex data structures and memory access patterns. We explore one of the broadest sets of multicore architectures in the HPC literature, including the Intel Xeon E5345 (Clovertown), AMD Opteron 2214 (Santa Rosa), AMD Opteron 2356 (Barcelona), Sun T5140 T2+ (Victoria Falls), as well as a QS20 IBM Cell Blade. Rather than hand-tuning LBMHD for each system, we develop a code generator that allows us to identify a highly optimized version for each platform, while amortizing the human programming effort. Results show that our auto-tuned LBMHD application achieves up to a 15x improvement compared with the original code at a given concurrency. Additionally, we present detailed analysis of each optimization, which reveal surprising hardware bottlenecks and software challenges for future multicore systems and applications.
Date: April 10, 2009
Creator: Williams, Samuel; Carter, Jonathan; Oliker, Leonid; Shalf, John & Yelick, Katherine
Partner: UNT Libraries Government Documents Department

Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms

Description: We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one of the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.
Date: October 16, 2008
Creator: Williams, Samuel; Oliker, Leonid; Vuduc, Richard; Shalf, John; Yelick, Katherine & Demmel, James
Partner: UNT Libraries Government Documents Department

Orbital-optimized opposite-spin scaled second order correlation: An economical method to improve the description of open-shell molecules

Description: Coupled cluster methods based on Brueckner orbitals are well-known to resolve the problems of symmetry-breaking and spin-contamination that are often associated with Hartree-Fock orbitals. However their computational cost is large enough to prevent application to large molecules. Here they present a simple approximation where the orbitals are optimized with the mean-field energy plus a correlation energy taken as the opposite-spin component of the second order many-body correlation energy, scaled by an empirically chosen parameter (recommended as 1.2 for general applications). This optimized 2nd order opposite spin (abbreviated as O2) method requires fourth order computation on each orbital iteration. O2 is shown to yield predictions of structure and frequencies for closed shell molecules that are very similar to scaled second order Moller-Plesset methods. However it yields substantial improvements for open shell molecules, where problems with spin-contamination and symmetry breaking are shown to be greatly reduced.
Date: January 1, 2007
Creator: Lochan, Rohini C. & Head-Gordon, Martin
Partner: UNT Libraries Government Documents Department

The Origins of the Rate Enhancement in LiNi0.4Co0.2-yAlyMn0.4O2 (0<y<_0.2) Cathode Materials

Description: Recently, much research has been directed towards finding a replacement cathode material for LiCoO{sub 2} combining high performance with lower cost and toxicity. One promising candidate material is the mixed transition metal oxide LiNi{sub 0.4}Co{sub 0.2}Mn{sub 0.4}O{sub 2}, which delivers 180 mAh/g below 4.4 V versus Li/Li{sup +}. However, in this material, there is 4% anti-site cation mixing, which hinders the mobility of lithium within the lattice, adversely affecting its rate performance in lithium batteries. Ongoing work in our lab has shown that partial or full substitution of cobalt with aluminum, LiNi{sub 0.4}Co{sub 0.2-y}Al{sub y}Mn{sub 0.4}O{sub 2} (0 < y {le} 0.2), can lead to significant improvements in rate performance. In particular, LiNi{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4}O{sub 2} shows greatly improved rate capability with almost no sacrifice in the overall capacity delivered at low rates between 2.0 and 4.3V (Figure 1). The smaller ionic radius of Al{sup 3+} in octahedral coordination (0.535 {angstrom}) compared to Li{sup +} (0.76 {angstrom}) creates a strong driving force for the formation of a more lamellar structure in the aluminum containing materials. XRD experiments and subsequent Rietveld refinement (Figure 2) reveal a significant decrease in anti-site defect concentration upon aluminum substitution, dropping from {approx}4% at y=0 to {approx}2.5% at y=0.2. Concurrently, there is an increase in the lithium slab dimension from 2.6 {angstrom} to 2.63 {angstrom}. This expansion allows for a reduced activation energy and improved lithium diffusivity through the crystal lattice. Interestingly, the pressed pellet conductivities of Al-substituted compounds are lower than that of the parent as determined by AC impedance measurements. This lends further credence to the hypothesis that structural effects resulting in improved lithium diffusivity are responsible for the rate enhancement, rather than changes in the electronic structure. Further experiments to understand the effect of structural changes induced by Al substitution on ...
Date: October 12, 2008
Creator: Doeff, Marca M & Wilcox, James D
Partner: UNT Libraries Government Documents Department

Out-of-band exposure characterization with the SEMATECH Berkeley 0.3-NA microfield exposure tool

Description: For the commercialization of extreme ultraviolet lithography (EUVL), discharge or laser produced, pulsed plasma light sources are being considered. These sources are known to emit into a broad range of wavelengths that are collectively referred to as the out-of-band (OOB) radiation by lithographers. Multilayer EUV optics reflect OOB radiation emitted by the EUV sources onto the wafer plane resulting in unwanted background exposure of the resist (flare) and reduced image contrast. The reflectivity of multilayer optics at the target wavelength of 13.5 nm is comparable to that of their reflectivity in the deep ultraviolet (DUV) and UV regions from 100-350 nm. The aromatic molecular backbones of many of the resists used for EUV are equally absorptive at specific DUV wavelengths as well. In order to study the effect of these wavelengths on imaging performance in a real system, we are in the process of integrating a DUV source into the SEMATECH Berkeley 0.3-NA Microfield Exposure Tool (MET). The MET plays an active role in advanced research in resist and mask development for EUVL and as such, we will utilize this system to systematically evaluate the imaging impact of DUV wavelengths in a EUV system. In this paper, we present the optical design for the new DUV component and the simulation-based imaging results predicting the potential impact of OOB based on known resist, mask, and multilayer conditions. It should be noted that because the projection optics work equally well as imaging optics at DUV wavelengths, the OOB radiation cannot be treated simply as uniform background or DC flare.
Date: February 23, 2009
Creator: George, Simi A.; Nauleau, Patrick; Rekawa, Senajith; Gullikson, Eric & Kemp, Charles D.
Partner: UNT Libraries Government Documents Department

Radionuclide Air Emission Report for 2008

Description: Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.
Date: May 21, 2009
Creator: Wahl, Linnea
Partner: UNT Libraries Government Documents Department

Range Energy Relation for Protons in Nuclear Emulsions

Description: An experimental range-energy relation in Ilford C-2 emulsion has been obtained for proteins up to 39.5 Mev. In the region from 17 to 33 Mev the relation for dry emulsion is fitted by the empirical equation E{sub (MeV)} = 0.251 R{sub ({mu})} 0.581. Variations in water content due to changes in atmospheric humidity make several percent difference in range. The range in Ilford glass is found to be 18 {+-} 4 percent longer than in dry C-2 emulsion.
Date: September 9, 1949
Creator: Bradner, H.; Smith, F.M.; Barkas, W.H. & Bishop, A.S.
Partner: UNT Libraries Government Documents Department

The nature of unusual luminescence in natural calcite, CaCO3

Description: The unusual luminescence of particular varieties of natural pink calcite (CaCO{sub 3}) samples was studied by laser-induced time-resolved luminescence spectroscopy at different temperatures. The luminescence is characterized by intense blue emission under short-wave UV lamp excitation with an extremely long decay time, accompanied by pink-orange luminescence under long wave UV excitation. Our investigation included optical absorption, natural thermostimulated luminescence (NTL) and Laser-Induced Breakdown Spectroscopy (LIBS) studies. Two luminescence centers were detected: a narrow violet band, with {lambda}{sub max} = 412 nm, {Delta} = 45 nm, two decay components of {tau}{sub 1} = 5 ns and {tau}{sub 2} = 7.2 ms, accompanied by very long afterglow, and an orange emission band with {lambda}{sub max} = 595 nm, {Delta} = 90 nm and {tau} = 5 ns. Both luminescence centers are thermally unstable with the blue emission disappearing after heating at 500 C, and the orange emission disappearing after heating at different temperatures starting from 230 C, although sometimes it is stable up to 500 C in different samples. Both centers have spectral-kinetic properties very unusual for mineral luminescence, which in combination with extremely low impurity concentrations, prevent their identification with specific impurity related emission. The most likely explanation of these observations may be the presence of radiation-induced luminescence centers. The long violet afterglow is evidently connected with trapped charge carrier liberation, with their subsequent migration through the valence band and ultimate recombination with a radiation-induced center responsible for the unusual violet luminescence.
Date: November 1, 2008
Creator: Gaft, M.; Nagli, L.; Panczer, G.; Waychunas, G. & Porat, N.
Partner: UNT Libraries Government Documents Department