257 Matching Results

Search Results

NACA Investigation of a Jet-Propulsion System Applicable to Flight

Description: Following a brief history of the NACA investigation of jet-propulsion, a discussion is given of the general investigation and analyses leading to the construction of the jet-propulsion ground-test mock-up. The results of burning experiments and of test measurements designed to allow quantitative flight-performance predictions of the system are presented and correlated with calculations. These calculations are then used to determine the performance of the system on the ground and in the air at various speeds and altitudes under various burning conditions. The application of the system to an experimental airplane is described and some performance predictions for this airplane are made. It was found that the main fire could be restricted to an intense, small, and short annular blue flame burning steadily and under control in the intended combustion space. With these readily obtainable combustion conditions, the combustion chamber the nozzle walls and the surrounding structure could be maintained at normal temperatures. The system investigated was found to be capable of burning one-half the intake air up the fuel rates of 3 pounds per second. Calculations were shown to agree well with experiment. It was concluded that the basic features of the jet-propulsion system investigation in the ground-test mock-up were sufficiently developed to be considered applicable to flight installation. Calculations indicated that an airplane utilizing this jet-propulsion system would have unusual capabilities in the high-speed range above the speeds of conventional aircraft and would, in addition, have moderately long cruising ranges if only the engine were used.
Date: April 1, 1944
Creator: Brown, Clinton E.
Partner: UNT Libraries Government Documents Department

A Concise Theoretical Method for Profile-Drag Calculation; Advance Report

Description: In this report a method is presented for the calculation of the profile drag of airfoil sections. The method requlres only a knowledge of the theoretical velocity distribution and can be applied readily once this dlstribution is ascertained. Comparison of calculated and experimental drag characteristics for several airfoils shows a satisfactory agreement. Sample calculatlons are included.
Date: February 1, 1944
Creator: Nitzberg, Gerald E.
Partner: UNT Libraries Government Documents Department

Investigation of flow in an axially symmetrical heated jet of air

Description: The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author).
Date: December 1, 1943
Creator: Corrsin, Stanley
Partner: UNT Libraries Government Documents Department

Summary of Airfoil Data

Description: Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. ...
Date: March 1, 1945
Creator: Stivers, Louis S.; Abbott, Ira H. & von Doenhoff, Albert E.
Partner: UNT Libraries Government Documents Department

Addition of heat to a compressible fluid in motion

Description: From Introduction: "The purpose of this report is to summarize, without extended proofs, the results of a study of a simplified model of nonadiabiatic, compressible fluid flow, both subsonic and supersonic, and to state these results in a form that will make them immediately useful in providing a theoretical background for current technical problems of high-speed combustion.
Date: February 1945
Creator: Hicks, Bruce L
Partner: UNT Libraries Government Documents Department

Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

Description: Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.
Date: November 1, 1945
Creator: West, F E
Partner: UNT Libraries Government Documents Department