97 Matching Results

Search Results

Direct Overt U.S. Aid Appropriations for and Military Reimbursements to Pakistan, FY2002-FY2018

Description: Table of data outlining direct overt U.S. aid appropriations and military reimbursements to Pakistan including number for fiscal years 2002-2011 (combined), fiscal years 2012-2016 (individually) and estimates for 2017 and 2018.
Date: September 6, 2017
Creator: Library of Congress. Congressional Research Service.
Partner: UNT Libraries Government Documents Department

Defense Authorization and Appropriations Bills: FY1970-FY2017

Description: This report is a research aid that lists the Department of Defense (DOD) authorization bills (Table 1) and appropriations bills (Table 2) for FY1970-FY2017. This report includes all the pertinent information on the passage of these bills through the legislative process: bill numbers, report numbers, dates reported and passed, recorded vote numbers and vote tallies, dates of passage of the conference reports with their numbers and votes, vetoes, substitutions, dates of final passage, and public law numbers.
Date: January 18, 2017
Creator: DeBruyne, Nese F.
Partner: UNT Libraries Government Documents Department

Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

Description: The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU ...
Date: March 1, 2008
Creator: RSI
Partner: UNT Libraries Government Documents Department

Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

Description: This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.
Date: February 29, 2008
Creator: SIngh, M.; Systems, Energy & Engineering, TA
Partner: UNT Libraries Government Documents Department

FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

Description: The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the ...
Date: October 1, 2007
Creator: Olszewski, Mitchell
Partner: UNT Libraries Government Documents Department

Fault Geomechanics and Carbon Dioxide Leakage Applied to Geological Storage: FY07 Quarterly and Summary Reports

Description: Safe and permanent storage of carbon dioxide in geologic reservoirs is critical to geologic sequestration. The objective of this study is to quantify the conditions under which a general (simulated) fault network and a specific (field case) fault network will fail and leak carbon dioxide out of a reservoir. Faults present a potential fast-path for CO{sub 2} leakage from reservoirs to the surface. They also represent potential induced seismicity hazards. It is important to have improved quantitative understandings of the processes that trigger activity on faults and the risks they present. Fortunately, the conditions under which leakage along faults is induced can be predicted and quantified given the fault geometry, reservoir pressure, an in-situ stress tensor. We proposed to expand the current capabilities of fault threshold characterization and apply that capability to a site where is CO{sub 2} injection is active or planned. Specifically, we proposed to use a combination of discrete/explicit and continuum/implicit codes to provide constrain the conditions of fault failure. After minor enhancements of LLNL's existing codes (e.g., LDEC), we would create a 3D synthetic model of a common configuration (e.g., a faulted dome). During these steps, we will identify a field site where the necessary information is available and where the operators are willing to share the necessary information. We would then execute an analysis specific to the field case. The primary products by quarter are: 1Q--Identification of likely field case; 2Q--Functioning prototype fault model; 3Q--Execution of fault-slip/migration calculation for synthetic case; and 4Q--Begin simulation of fault-slip/migration calculation for field system. It is worth noting that due to the continuing resolution, we did not receive any funds until 3Q, and did not receive >65% of the support until 4Q. That said, we were still able to meet all of our milestones for FY07 on time and ...
Date: November 2, 2007
Creator: Friedmann, S. J. & Morris, J.
Partner: UNT Libraries Government Documents Department

FY07 Engineering Research and Technology Report

Description: This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2007. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow'. Engineering's mission is carried out through research and technology. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. The technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice'. This report combines the work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation.
Date: February 6, 2008
Creator: Minichino, C
Partner: UNT Libraries Government Documents Department

FY07 LDRD Final Report A Fracture Mechanics and Tribology Approach to Understanding Subsurface Damage on Fused Silica during Grinding and Polishing

Description: The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanics and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and ...
Date: February 5, 2008
Creator: Suratwala, T I; Miller, P E; Menapace, J A; Wong, L L; Steele, R A; Feit, M D et al.
Partner: UNT Libraries Government Documents Department

Facilitation of the Estuary/Ocean Subgroup for Research, Monitoring, and Evaluation, FY07 Annual Report

Description: This annual report is a deliverable for fiscal year 2007 (FY07) for Project 2002-077-00, Facilitation of the Estuary/Ocean Subgroup (EOS). The EOS is part of the research, monitoring, and evaluation (RME) effort the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) developed in response to responsibilities arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The goal of the EOS project is to facilitate activities of the estuary/ocean RME subgroup as it coordinates design and implementation of federal RME in the lower Columbia River and estuary. In FY07, EOS project accomplishments included 1) subgroup meetings; 2) participation in the estuary work group of the Pacific Northwest Aquatic Monitoring Partnership; 3) project management via the project tracking system, PISCES; 4) quarterly project status reports; and 5) a major revision to the Estuary RME Plan (new version September 2007) based on comments by EOS members and invited reviewers.
Date: October 10, 2007
Creator: Johnson, Gary E. & Diefenderfer, Heida L.
Partner: UNT Libraries Government Documents Department

Biosecurity Techbase FY07 Final Report

Description: This tech base award has close links with the Viral Identification Characterization Initiative (VICI) ER LDRD. The tech base extends developed code to enable a capability for biodefense, biosurveillance, and clinical diagnostics. The code enables the design of signatures to detect and discover viruses, without relying on prior assumptions as to the species of virus present. This approach for primer and signature design contrasts with more traditional PCR approaches, in which a major weakness is the unlikelihood of viral discovery or detection of unanticipated species. There were three crucial areas of the project that were not research and development, so could not be funded under the ER LDRD, but were a reduction to practice of the existing VICI algorithm that were necessary for the success of overall computational project goals. These areas, funded by the 2007 Tech Base award, were: (1) improvement of the code developed under the VICI LDRD by incorporating T{sub m} and free energy predictions using Unafold; (2) porting of code developed on the kpath Sun Solaris cluster to the Yana and Zeus LC machines; and (3) application of that code to perform large numbers of simulations to determine parameter effects.
Date: October 22, 2007
Creator: Gardner, S N & Williams, P L
Partner: UNT Libraries Government Documents Department

Wind Powering America FY07 Activities Summary

Description: The Wind Powering America FY07 Activities Summary reflects the accomplishments of our state wind working groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. WPA continues to work with its national, regional, and state partners to communicate the opportunities and benefits of wind energy to a diverse set of stakeholders. WPA now has 30 state wind working groups (welcoming Georgia and Wisconsin in 2007) that form strategic alliances to communicate wind's benefits to the state stakeholders. More than 140 members of national and state public and private sector organizations from 39 U.S. states and Canada attended the 6th Annual WPA All-States Summit in Los Angeles in June. WPA's emphasis remains on the rural agricultural sector, which stands to reap the significant economic development benefits of wind energy development. Additionally, WPA continues its program of outreach, education, and technical assistance to Native American communities, public power entities, and regulatory and legislative bodies.
Date: February 1, 2008
Partner: UNT Libraries Government Documents Department

FY2007 NREL Energy Storage R&D Progress Report

Description: The National Renewable Energy Laboratory is engaged in research and development activities to support achieving targets and objectives set by the Energy Storage Program at the Office of FreedomCAR and Vehicle Technology in the U.S. Department of Energy. These activities include: 1. supporting the Battery Technology Development Program with battery thermal characterization and modeling and with energy storage system simulations and analysis; 2. supporting the Applied Research Program by developing thermal models to address abuse of Li-Ion batteries; and 3. supporting the Focused Long-Term Research Program by investigating improved Li-Ion battery electrode materials. This report summarizes the results of NREL energy storage activities in FY07.
Date: November 1, 2007
Creator: Pesaran, A.
Partner: UNT Libraries Government Documents Department

300 Area D4 Project Fiscal Year 2007 Building Completion Report

Description: This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.
Date: January 15, 2009
Creator: Westberg, R. A.
Partner: UNT Libraries Government Documents Department

200-BP-1 Prototype Hanford Barrier Annual Monitoring Report for Fiscal Years 2005 Through 2007

Description: A prototype Hanford barrier was deployed over the 216-B-57 Crib at the Hanford Site in 1994 to prevent percolation through the underlying waste and to minimize spreading of buried contaminants. This barrier is being monitored to evaluate physical and hydrologic performance at the field scale. This report summarizes data collected during the period FY 2005 through FY 2007. In FY 2007, monitoring of the prototype Hanford barrier focused on barrier stability, vegetative cover, evidence of plant and animal intrusion, and the main components of the water balance, including precipitation, runoff, storage, drainage, and deep percolation. Owing to a hiatus in funding in FY 2005 through 2006, data collected were limited to automated measurements of the water-balance components. For the reporting period (October 2004 through September 2007) precipitation amount and distribution were close to normal. The cumulative amount of water received from October 1994 through September 2007 was 3043.45 mm on the northern half of the barrier, which is the formerly irrigated treatment, and 2370.58 mm on the southern, non-irrigated treatments. Water storage continued to show a cyclic pattern, increasing in the winter and declining in the spring and summer to a lower limit of around 100 mm in response to evapotranspiration. The 600-mm design storage has never been exceeded. For the reporting period, the total drainage from the soil-covered plots ranged from near zero amounts under the soil-covered plots to almost 20 mm under the side slopes. Over the 13-yr monitoring period, side slope drainage accounted for about 20 percent of total precipitation while the soil-covered plots account for only 0.12 mm total. Above-asphalt and below-asphalt moisture measurements show no evidence of deep percolation of water. Topographic surveys show the barrier and protective side slopes to be stable. Plant surveys show a relatively high coverage of native plants still persists ...
Date: February 1, 2008
Creator: Ward, Andy L.; Link, Steven O.; Strickland, Christopher E.; Draper, Kathryn E. & Clayton, Ray E.
Partner: UNT Libraries Government Documents Department

Annual Hanford Seismic Report for Fiscal Year 2007

Description: This annual report documents the locations, magnitudes, and geologic interpretations of earthquakes recorded for the Hanford monitoring region of south-central Washington in fiscal year 2007 (October 2006 through September 2007). The report provides summaries of seismic events recorded during the first three quarters of fiscal year 2007 and contains a more comprehensive discussion of seismic events for the fourth quarter of the fiscal year.
Date: December 27, 2007
Creator: Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E. & Devary, Joseph L.
Partner: UNT Libraries Government Documents Department

T Tank Farm Interim Surface Barrier Demonstration -- Vadose Zone Monitoring FY07 Report

Description: CH2M HILL Hanford Group, Inc. is currently in the process of constructing a temporary surface barrier over a portion of the T Tank Farm as part of the T farm Interim Surface Barrier Demonstration Project. The surface barrier is designed to prevent the infiltration of precipitation into the contaminated soil zone created by the Tank T-106 leak and minimize movement of the contamination. As part of the demonstration effort, vadose zone moisture monitoring is being performed to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered and remotely-controlled system was installed to continuously monitor soil water conditions in four instrument nests (i.e., A, B, C, and D) and the site meteorological condition. Each instrument nest was composed of a capacitance probe with multiple sensors, multiple heat-dissipation units, a neutron probe access tube and a datalogger. Nests A and B also contained a drain gauge each. The principle variables monitored for this purpose are soil-water content, soil-water pressure, and soil-water flux. In addition to these, soil temperature, precipitation, and air temperature are measured. Data from each of the dataloggers were transmitted remotely to the receiving computer. The neutron probe access tube was used to perform quarterly manual measurements of soil-water content using a neutron probe. This monitoring system was used to assess the soil water conditions in the soil outside and within the footprint of the surface barrier to be emplaced in the Hanford T Tank Farm. Data to date is baseline under the condition without the interim surface barrier in place. All the instruments except the two drain gauges were functional in FY07. The capacitance-probe measurements showed that the soil-moisture content at relatively shallow depths (e.g., 0.6 and 0.9 m) was increasing since October 2006 and reached the highest in early January 2007 followed by a slight ...
Date: January 11, 2008
Creator: Zhang, Z. F.; Strickland, Christopher E.; Keller, Jason M.; Wittreich, Curtis D. & Sydnor, Harold A.
Partner: UNT Libraries Government Documents Department

The Sandia MEMS passive shock sensor : FY07 maturation activities.

Description: This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.
Date: August 1, 2008
Creator: Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C. et al.
Partner: UNT Libraries Government Documents Department