105 Matching Results

Search Results

Defense Authorization and Appropriations Bills: FY1970-FY2017

Description: This report is a research aid that lists the Department of Defense (DOD) authorization bills (Table 1) and appropriations bills (Table 2) for FY1970-FY2017. This report includes all the pertinent information on the passage of these bills through the legislative process: bill numbers, report numbers, dates reported and passed, recorded vote numbers and vote tallies, dates of passage of the conference reports with their numbers and votes, vetoes, substitutions, dates of final passage, and public law numbers.
Date: January 18, 2017
Creator: DeBruyne, Nese F.
Partner: UNT Libraries Government Documents Department

The Federal Budget Deficit and the Business Cycle

Description: This report discusses the annual federal budget deficit, which has fallen significantly over the course of the current economic expansion, from a high of 9.8% of gross domestic product (GDP) in FY2009 to 3.2% of GDP in FY2016
Date: December 9, 2016
Creator: Driessen, Grant A. & Labonte, Marc
Partner: UNT Libraries Government Documents Department

Use of the Annual Appropriations Process to Block Implementation of the Affordable Care Act (FY2011-FY2017)

Description: This report summarizes the ACA-related language added to annual appropriations legislation by congressional appropriators since the ACA was signed into law. The information is presented in Table 1. While a detailed examination of the ACA itself is beyond the scope of this report, a brief overview of the ACA's core provisions and its impact on federal spending is provided as context for the material in the table.
Date: August 4, 2016
Creator: Redhead, C. Stephen & Cornell, Ada S.
Partner: UNT Libraries Government Documents Department

Federal Benefits and Services for People with Low Income: Overview of Spending Trends, FY2008-FY2015

Description: This report is the most recent in a series that attempts to identify and discuss programs that provide federal benefits and services targeted toward low-income populations, focusing on aggregate spending trends. The report looks at federal low-income spending from FY2008 (at the onset of the 2007-2009 recession) through FY2015 (after implementation of the Patient Protection and Affordable Care Act, or ACA).
Date: July 29, 2016
Creator: Spar, Karen & Falk, Gene
Partner: UNT Libraries Government Documents Department

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

Description: The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).
Date: March 20, 2011
Creator: Koch, D
Partner: UNT Libraries Government Documents Department

FY 2011 4th Quarter Metric: Estimate of Future Aerosol Direct and Indirect Effects

Description: The global and annual mean aerosol direct and indirect effects, relative to 1850 conditions, estimated from CESM simulations are 0.02 W m-2 and -0.39 W m-2, respectively, for emissions in year 2100 under the IPCC RCP8.5 scenario. The indirect effect is much smaller than that for 2000 emissions because of much smaller SO2 emissions in 2100; the direct effects are small due to compensation between warming by black carbon and cooling by sulfate.
Date: September 21, 2011
Creator: Koch, D.
Partner: UNT Libraries Government Documents Department

FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems

Description: This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van't Hoff calculations. Further investigations ...
Date: September 1, 2011
Creator: Martin, Leigh R.; Zalupski, Peter R. & Grimes, Travis S.
Partner: UNT Libraries Government Documents Department

Idaho National Laboratory's FY11 Greenhouse Gas Report

Description: A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.
Date: March 1, 2012
Creator: Frerichs, Kimberly
Partner: UNT Libraries Government Documents Department

FY11 annual Report: PHEV Engine Control and Energy Management Strategy

Description: Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.
Date: October 1, 2011
Creator: Chambon, Paul H.
Partner: UNT Libraries Government Documents Department

Improving Transparency in the Reporting of Safeguards Implementation: FY11 Update

Description: In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data and available for viewing at http://safeguardsportal.pnnl.gov.
Date: September 30, 2011
Creator: Toomey, Christopher; Odlaug, Christopher S. & Wyse, Evan T.
Partner: UNT Libraries Government Documents Department

FY2011 Annual Report for the Actinide Isomer Detection Project

Description: This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted from an HEU target when bombarded with 11 MeV neutrons. This report discussed the analysis and resulting conclusions from those measurements. There was one strong candidate, at 1204 keV, of an isomeric signature of 235U. The half-life of the state is estimated to be 9.3 {mu}s. The measured time dependence fits the decay time structure very well. Other possible explanations for the 1204-keV state were investigated, but they could not explain the gamma ray. Unfortunately, the relatively limited statistics of the measurement limit, and the lack of understanding of some of the systematic of the experiment, limit the authors to ...
Date: October 1, 2011
Creator: Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha & Hatarik, R.
Partner: UNT Libraries Government Documents Department

FY2011 Progress Report: Agreement 8697 - NOx Sensor Development

Description: Objectives are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) OBD II systems; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements and designs and manufacturing methods that are compatible with mass fabrication; and (3) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization. Approach used is: (1) Use an ionic (O{sup 2-}) conducting ceramic as a solid electrolyte and metal or metal-oxide electrodes; (2) Correlate NO{sub x} concentration with changes in cell impedance; (3) Evaluate sensing mechanisms and aging effects on long-term performance using electrochemical techniques; and (4) Collaborate with Ford Research Center to optimize sensor performance and perform dynamometer and on-vehicle testing. Work in FY2011 focused on using an algorithm developed in FY2010 in a simplified strategy to demonstrate how data from controlled laboratory evaluation could be applied to data from real-world engine testing. The performance of a Au wire prototype sensor was evaluated in the laboratory with controlled gas compositions and in dynamometer testing with diesel exhaust. The laboratory evaluation indicated a nonlinear dependence of the NO{sub x} and O{sub 2} sensitivity with concentration. For both NO{sub x} and O{sub 2}, the prototype sensor had higher sensitivity at concentrations less than {approx}20 ppm and {approx}7%, respectively, compared to lower NO{sub x} and O{sub 2} sensitivity at concentrations greater than {approx}50 ppm and {approx}10.5%, respectively. Results in dynamometer diesel exhaust generally agreed with the laboratory results. Diesel exhaust after-treatment systems will likely require detection levels less than {approx}20 ppm in order to meet emission regulations. The relevant mathematical expressions for sensitivity in different concentration regimes obtained from bench-level laboratory evaluation were used to adjust the sensor signal in dynamometer testing. Both NO{sub x} and O{sub 2} exhibited ...
Date: November 1, 2011
Creator: Woo, L Y & Glass, R S
Partner: UNT Libraries Government Documents Department

FY11 Level-2 Milestone 3953: TLCC2 contract awarded

Description: This report documents completion of FY11 L2 milestone No.3953-TLCC2 contract award. This milestone was scheduled for completion on 3/31/11 and was completed on 4/14/11. There is a separate milestone (3856), due at the end of the fiscal year, concerned with installation of the first LLNL SU and early user access. Efforts related to this tri-lab L2 milestone started early in 2010 with the development of tri-lab requirements for the second ASC capacity system procurement. The SOW was then developed along with necessary RFP paperwork and sent to HQ/DOE for their review prior to being released. There was significant delay in getting this step completed which led to this milestone being put at risk for several months. However, once the RFP was approved and released we were able to get the procurement back on track with aggressive proposal response and review timelines.
Date: September 12, 2011
Creator: Carnes, B
Partner: UNT Libraries Government Documents Department

FY2011 Annual Report for NREL Energy Storage Projects

Description: This report describes the work of NREL's Energy Storage group for FY2011. The National Renewable Energy Laboratory (NREL) supports energy storage R&D under the Vehicle Technologies Program at the U.S. Department of Energy (DOE). The DOE Energy Storage program's charter is to develop battery technologies that will enable large market penetration of electric drive vehicles. These vehicles could have a significant impact on the nation's goal of reducing dependence on imported oil and gaseous pollutant emissions. DOE has established several program activities to address and overcome the barriers limiting the penetration of electric drive battery technologies: cost, performance, safety, and life. These programs are: (1) Advanced Battery Development [through the United States Advanced Battery Consortium (USABC)]; (2) Testing, Design and Analysis (TDA); (3) Applied Battery Research (ABR); and (4) Focused Fundamental Research, or Batteries for Advanced Transportation Technologies (BATT). In FY11, DOE funded NREL to make technical contributions to all of these R&D activities. This report summarizes NREL's R&D projects in FY11 in support of the USABC, TDA, ABR, and BATT program elements. In addition, we continued the enhancement of NREL's battery testing facilities funded through the American Reinvestment and Recovery Act (ARRA) of 2009. The FY11 projects under NREL's Energy Storage R&D program are briefly described below. Each of these is discussed in depth in the main sections of this report.
Date: April 1, 2012
Creator: Pesaran, A.; Ban, C.; Dillon, A.; Gonder, J.; Ireland, J.; Keyser, M. et al.
Partner: UNT Libraries Government Documents Department

Particle Physics at the University of Pittsburgh Summary Report for Proposal Period FY'09-11

Description: Presented is the final summary report for grant DOE-FG02-91ER40646. The HEP group at the University consists of three tasks: B,D and L. Task B supports Pitt's CDF group at the energy frontier which includes Joe Boudreau and Paul Shepard. Work of the group includes Hao Song's thesis on the measurement of the B_c lifetime using exclusive J/psi+pion decays, and an update of the previous B_c semi-leptonic analyses under the supervision of Paul Shepard. Task D supports Pitt's neutrino group at the intensity frontier which includes PIs Dytman, Naples and Paolone. The group also includes postdoctoral research associate Danko, and thesis students Isvan (MINOS), Eberly (Minerva ), Ren (Minerva )and Hansen (T2K). This report summarizes their progress on ongoing experiments which are designed to make significant contributions to a detailed understanding of the neutrino mixing matrix. Task L supports Pitt's ATLAS group at the energy frontier and includes investigators Vladimir Savinov, James Mueller and Joe Boudreau. This group contributed both to hardware (calorimeter electronics, Savinov) and to software (Simulation, Detector Description, and Visualization: Boudreau and Mueller; MC generators: Savinov) and a summary of their progress is presented.
Date: October 1, 2012
Creator: Boudreau, Joe; Dytman, Steven; Mueller, James; Naples, Donna; Paolone, Vittorio & Savinov, Vladimir
Partner: UNT Libraries Government Documents Department