4,212 Matching Results

Search Results

Search for Resonances in the Photoproduction of Proton-Antiproton Pairs

Description: Results are reported on the reaction {gamma}p {yields} p{bar p}p with beam energy in the range 4.8-5.5 GeV. The data were collected at the Thomas Jefferson National Accelerator Facility in CLAS experiment E01-017(G6C). The focus of this study is an understanding of the mechanisms of photoproduction of proton-antiproton pairs, and to search for intermediate resonances, both narrow and broad, which decay to p{bar p}. The total measured cross section in the photon energy range 4.8-5.5 GeV is {sigma} = 33 {+-} 2 nb. Measurement of the cross section as a function of energy is provided. An upper limit on the production of a narrow resonance state previously observed with a mass of 2.02 GeV/c{sup 2} is placed at 0.35 nb. No intermediate resonance states were observed. Meson exchange production appears to dominate the production of the proton-antiproton pairs.
Date: June 30, 2006
Creator: Stokes, Burnham
Partner: UNT Libraries Government Documents Department

Fabrication and characterization of submicron polymer waveguides by micro-transfer molding

Description: Various methods exist for fabrication of micron and submicron sized waveguide structures. However, most of them include expensive and time consuming semiconductor fabrication techniques. An economical method for fabricating waveguide structures is introduced and demonstrated in this thesis. This method is established based on previously well-developed photonic crystal fabrication method called two-polymer microtransfer molding. The waveguide in this work functions by a coupler structure that diffracts the incident light into submicron polymer rods. The light is then guided through the rods. Characterization is done by collecting the light that has been guided through the waveguide and exits the end of these submicron polymer bars. The coupling and waveguiding capabilities are demonstrated using two light sources, a laser and white light.
Date: December 15, 2009
Creator: Wu, Te-Wei
Partner: UNT Libraries Government Documents Department

Diffusion Compton profondement virtuelle dans le Hall A au Jefferson Laboratory

Description: Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.
Date: December 1, 2005
Creator: Camacho, Carlos Munoz
Partner: UNT Libraries Government Documents Department

Measurement of the neutron spin structure function at low Q{sup 2}

Description: The spin dependent cross sections, {sigma}{sup T}{sub 1/2} and {sigma}{sup T}{sub 3/2}, and asymmetries, A{sub {parallel}} and A{sub {perp}}, for {sup 3}He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process {sup 3}{vec He}({vec e},e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gcrasimov-Drell-Hcarn integral is presented at a 4-momentum transfer Q{sup 2} of 0.2-1.0 GeV{sup 2} . Also presented are results on the performance of the polarized {sup 3}He target. Polarization of {sup 3}He vvas achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The {sup 3}He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Date: August 1, 2000
Creator: Jensen, John Steffen
Partner: UNT Libraries Government Documents Department

Measurement of the neutron ({sup 3}He) spin structure functions at low Q{sup 2}: A CONNECTION BETWEEN THE BJORKEN AND GERASIMOV-DRELL-HEARN SUM RULE

Description: This dissertation presents results of experiment E94-010 performed at Jefferson Laboratory (simply known as JLab) in Hall A. The experiment aimed to measure the low Q{sup 2} evolution of the Gerasimov-Drell-Hearn (GDH) integral from Q{sup 2} = 0.1 to 0.9 GeV{sup 2}. The GDH sum rule at the real photon point provides an important test of Quantum Chromodynamics (QCD). The low Q{sup 2} evolution of the GDH integral contests various resonance models, Chiral Perturbation Theory ({chi}#31;PT) and lattice QCD calculations, but more importantly, it helps us understand the transition between partonic and hadronic degrees of freedom. At high Q{sup 2}, beyond 1 GeV{sup 2}, the difference of the GDH integrals for the proton and the neutron is related to the Bjorken sum rule, another fundamental test of QCD. In addition, results of the measurements for the spin structure functions g{sub 1} and g{sub 2}, cross sections, and asymmetries are presented. E94-010 was the first experiment of its kind at JLab. It used a high-pressure, polarized {sup 3}He target with a gas pressure of 10 atm and average target polarization of 35%. For the first time, the polarized electron source delivered an average beam polarization of 70% with a beam current of 15 {micro}#22;A. The limit on the beam current was only imposed by the target. The experiment required six different beam energies from 0.86 to 5.1 GeV. This was the first time the accelerator ever reached 5.1 GeV. Both High-Resolution Spectrometers of Hall A, used in singles mode, were positioned at 15.5#14;{deg} each.
Date: December 1, 2002
Creator: Djawotho, Pibero
Partner: UNT Libraries Government Documents Department

A Search for Higher Twist Effects in the Neutron Spin Structure Function g{sup n}{sub 2}(x,Q{sup 2})

Description: Jefferson Lab experiment E97-103 measured the spin structure function g{sup n}{sub 2}(x, Q{sup 2}) from a Q{sup 2} of 0.58 to 1.36 with a nearly constant x of 0.2. Combining this data with a fit to the world g{sup n}{sub 1} data, the size of higher twist contributions to the spin structure functions can be extracted using the Wandzura-Wilczek relation. These higher twist contributions result from quark-gluon correlations and are expected to be larger as Q{sup 2} decreases. This experiment was performed in Hall A with a longitudinally polarized electron beam and a high density polarized {sup 3}He target. The physics motivation and an overview of the experiment will be presented.
Date: August 1, 2003
Creator: Kramer, Kevin
Partner: UNT Libraries Government Documents Department

Precision Measurement of the proton neutral weak form factors at Q{sup 2} ~ 0.1 GeV{sup 2}

Description: This thesis reports the HAPPEX measurement of the parity-violating asymmetry for longitudinally polarized electrons elastically scattered from protons in a liquid hydrogen target. The measurement was carried out in Hall A at Thomas Jefferson National Accelerator Facility using a beam energy E = 3 GeV and scattering angle <θ{sub lab}> = 6◦. The asymmetry is sensitive to the weak neutral form factors from which we extract the strange quark electric and magnetic form factors (G{sup s}{sub E} and G{sup s}{sub M}) of the proton. The measurement was conducted during two data-taking periods in 2004 and 2005. This thesis describes the methods for controlling the helicity-correlated beam asymmetries and the analysis of the raw asymmetry. The parity-violating asymmetry has been measured to be A{sub PV} = −1.14± 0.24 (stat)±0.06 (syst) ppm at <Q{sup 2}> = 0.099 GeV{sup 2} (2004), and A{sub PV} = −1.58±0.12 (stat)±0.04 (syst) ppm at <Q{sup 2}> = 0.109 GeV{sup 2} (2005). The strange quark form factors extracted from the asymmetry are G{sup s}{sub E} + 0.080G{sup s}{sub M} = 0.030 ± 0.025 (stat) ± 0.006 (syst) ± 0.012 (FF) (2004) and G{sup s}{sub E} +0.088G{sup s}{sub M} = 0.007±0.011 (stat)±0.004 (syst)±0.005 (FF) (2005). These results place the most precise constraints on the strange quark form factors and indicate little strange dynamics in the proton.
Date: February 1, 2007
Creator: Kaufman, Lisa
Partner: UNT Libraries Government Documents Department

Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

Description: One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO){sub 3} and CpFe(CO){sub 2} have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO){sub 5}[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO){sub 5} have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.
Date: December 16, 2008
Creator: Cahoon, James Francis
Partner: UNT Libraries Government Documents Department

Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems

Description: Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL{sup -}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -} ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the concentration of ...
Date: July 11, 2007
Creator: Kvashnina, Kristina
Partner: UNT Libraries Government Documents Department

Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach

Description: One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method ...
Date: May 22, 2008
Creator: Gliebe, Cheryn E & Ananth, Nandini
Partner: UNT Libraries Government Documents Department

Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

Description: Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.
Date: May 15, 2008
Creator: Yang, Aram & Yang, Aram
Partner: UNT Libraries Government Documents Department

Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

Description: Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.
Date: August 15, 2008
Creator: Coble, Inger M
Partner: UNT Libraries Government Documents Department

Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

Description: Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070+1100/-760 pb was measured at an excitation energy of 16.0 +- 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660+450/-370 pb was measured at 22.0 +- 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480+1730/1370 pb at an excitation energy of 16.0 +- 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 MeV. The half life of 88gNb was measured and determined ...
Date: July 31, 2008
Creator: Gates, Jacklyn M.
Partner: UNT Libraries Government Documents Department

Coupling of the 4f Electrons in Lanthanide Molecules

Description: (C5Me5)2LnOTf where Ln = La, Ce, Sm, Gd, and Yb have been synthesized and these derivatives are good starting materials for the synthesis of (C5Me5)2LnX derivatives. (C5Me5)2Ln(2,2'-bipyridine), where Ln = La, Ce, Sm, and Gd, along with several methylated bipyridine analogues have been synthesized and their magnetic moments have been measured as a function of temperature. In lanthanum, cerium, and gadolinium complexes the bipyridine ligand ligand is unequivocally the radical anion, and the observed magnetic moment is the result of intramolecular coupling of the unpaired electron on the lanthanide fragment with the unpaired electron on the bipyridine along with the intermolecular coupling between radicals. Comparison with the magnetic moments of the known compounds (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine) leads to an understanding of the role of the Sm(II)/Sm(III) and Yb(II)/Yb(III) couple in the magnetic properties of (C5Me5)2Sm(2,2'-bipyridine) and (C5Me5)2Yb(2,2'-bipyridine). In addition, crystal structures of (C5Me5)2Ln(2,2'-bipyridine) and [(C5Me5)2Ln(2,2'-bipyridine)][BPh4](Ln= Ce and Gd), where the lanthanide is unequivocally in the +3 oxidation state, give the crystallographic characteristics of bipyridine as an anion and as a neutral ligand in the same coordination environment, respectively. Substituted bipyridine ligands coordinated to (C5Me5)2Yb are studied to further understand how the magnetic coupling in (C5Me5)2Yb(2,2'-bipyridine) changes with substitutions. In the cases of (C5Me5)2Yb(5,5'-dimethyl-2,2'-bipyridine) and (C5Me5)2Yb(6-methyl-2,2'-bipyridine), the valence, as measured by XANES, changes as a function of temperature. In general, the magnetism in complexes of the type (C5Me5)2Yb(bipy.-), where bipyo represents 2,2'-bipyridine and substituted 2,2'-bipyridine ligands, is described by a multiconfiguration model, in which the ground state is an open-shell singlet composed of two configurations: Yb(III, f13)(bipy.-) and Yb(II, f14)(bipyo). The relative contributions of the two configurations depends on the substituents on the bipyridine ligand.[(C5H4Me)3Ln]2(L) (Ln = Ce, Tb; L = 4,4'-bipyridine, 1,4-benzoquinone) are synthesized in order to study the effect of these ligands on the oxidation states of the metal ...
Date: September 12, 2008
Creator: Kazhdan, Daniel
Partner: UNT Libraries Government Documents Department

Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

Description: The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.
Date: February 14, 2007
Creator: Prost, Lionel Robert
Partner: UNT Libraries Government Documents Department

Structural Investigations of Surfaces and Orientation-SpecificPhenomena in Nanocrystals and Their Assemblies

Description: Studies of colloidal nanocrystals and their assemblies are presented. Two of these studies concern the atomic-level structural characterization of the surfaces, interfaces, and interiors present in II-VI semiconductor nanorods. The third study investigates the crystallographic arrangement of cobalt nanocrystals in self-assembled aggregates. Crystallographically-aligned assemblies of colloidal CdSe nanorods are examined with linearly-polarized Se-EXAFS spectroscopy, which probes bonding along different directions in the nanorod. This orientation-specific probe is used, because it is expected that the presence of specific surfaces in a nanorod might cause bond relaxations specific to different crystallographic directions. Se-Se distances are found to be contracted along the long axis of the nanorod, while Cd-Se distances display no angular dependence, which is different from the bulk. Ab-initio density functional theory calculations upon CdSe nanowires indicate that relaxations on the rod surfaces cause these changes. ZnS/CdS-CdSe core-shell nanorods are studied with Se, Zn, Cd, and S X-ray absorption spectroscopy (XAS). It is hypothesized that there are two major factors influencing the core and shell structures of the nanorods: the large surface area-to-volume ratio, and epitaxial strain. The presence of the surface may induce bond rearrangements or relaxations to minimize surface energy; epitaxial strain might cause the core and shell lattices to contract or expand to minimize strain energy. A marked contraction of Zn-S bonds is observed in the core-shell nanorods, indicating that surface relaxations may dominate the structure of the nanorod (strain might otherwise drive the Zn-S lattice to accommodate the larger CdS or CdSe lattices via bond expansion). EXAFS and X-ray diffraction (XRD) indicate that Cd-Se bond relaxations might be anisotropic, an expected phenomenon for a rod-shaped nanocrystal. Ordered self-assembled aggregates of cobalt nanocrystals are examined with transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SAED patterns from multilayered assemblies show that the nanocrystals have preferred crystallographic orientations. ...
Date: June 17, 2006
Creator: Aruguete, Deborah Michiko
Partner: UNT Libraries Government Documents Department

Mechanisms for fatigue and wear of polysilicon structural thinfilms

Description: Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of {approx}4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study wear mechanisms in micron-scale silicon in ambient air. Worn parts are examined by analytical scanning and transmission electron microscopy, while temperature changes are monitored using infrared microscopy. These results are compared with the development of values of static coefficients of friction (COF) with number of wear cycles. Observations show amorphous debris particles ({approx}50-100 nm) created by fracture through the silicon grains ({approx}500 nm), which subsequently oxidize, agglomerate into clusters and create plowing tracks. A nano-crystalline layer ({approx}20-200 nm) forms at worn regions. No dislocations or extreme temperature increases are found, ruling out plasticity and temperature-assisted mechanisms. The COF reaches a ...
Date: December 1, 2006
Creator: Alsem, Daniel Henricus
Partner: UNT Libraries Government Documents Department

Biomolecular Assembly of Gold Nanocrystals

Description: Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.
Date: May 20, 2005
Creator: Micheel, Christine Marya
Partner: UNT Libraries Government Documents Department

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

Description: In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.
Date: May 17, 2007
Creator: Liu, Haitao
Partner: UNT Libraries Government Documents Department