Search Results

open access

Map-based cloning of the NIP gene in model legume Medicago truncatula.

Description: Large amounts of industrial fertilizers are used to maximize crop yields. Unfortunately, they are not completely consumed by plants; consequently, this leads to soil pollution and negative effects on aquatic systems. An alternative to industrial fertilizers can be found in legume plants that provide a nitrogen source that is not harmful for the environment. Legume plants, through their symbiosis with soil bacteria called rhizobia, are able to reduce atmospheric nitrogen into ammonia, a biologic… more
Date: May 2007
Creator: Morris, Viktoriya
Partner: UNT Libraries
open access

Analysis of the Expression Profiles of Two Isoforms of the Antifungal Protein Osmotin from Gossypium hirsutum

Description: The expression of two cotton osmotin genes was evaluated in terms of the mRNA and protein expression patterns in response to chemical inducers such as ethylene, hydrogen peroxide, and sodium chloride. Reverse transcriptase-polymerase chain reactions (RT-PCR) indicated that osmotin mRNAs are expressed constitutively in root tissues of cotton plants, and that they are rapidly induced in leaf and stem tissues upon ethylene treatment. Real time RT-PCR indicated that osmotin transcript levels were… more
Date: May 2007
Creator: Spradling, Kimberly Diane
Partner: UNT Libraries
open access

Physical Map between Marker 8O7 and 146O17 on the Medicago truncatula Linkage Group 1 that Contains the NIP Gene

Description: The Medicago truncatula NIP gene is located on M. truncatula Linkage Group 1. Informative recombinants showed crossovers that localize the NIP gene between markers 146O17 and 23C16D. Marker 164N9 co-segregates with the NIP gene, and the location of marker 164N9 is between markers 146O17 and 23C16D. Based upon data from the Medicago genome sequencing project, a subset of the model legume Medicago truncatula bacterial artificial chromosomes (BACs) were used to create a physical map on the DNA in … more
Date: December 2007
Creator: Lee, Yi-Ching
Partner: UNT Libraries
open access

Evaluation of Zinc Toxicity Using Neuronal Networks on Microelectrode Arrays: Response Quantification and Entry Pathway Analysis

Description: Murine neuronal networks, derived from embryonic frontal cortex (FC) tissue grown on microelectrode arrays, were used to investigate zinc toxicity at concentrations ranging from 20 to 2000 mM total zinc acetate added to the culture medium. Continual multi-channel recording of spontaneous action potential generation allowed a quantitative analysis of the temporal evolution of network spike activity generation at specific zinc acetate concentrations. Cultures responded with immediate concentratio… more
Date: August 2007
Creator: Parviz, Maryam
Partner: UNT Libraries
Back to Top of Screen