386 Matching Results

This system will be undergoing maintenance January 24th 9:00-11:00AM CST.

Search Results

Measurement of the $B \to J/\psi X$ inclusive cross-section at the collider detector at Fermilab

Description: The Collider Detector at Fermilab (CDF) is a multi-purpose detector designed to study proton-antiproton collisions at center-of-mass energies of 1.96 TeV/c{sup 2}. One of the most importatn components of CDF is the silicon tracking detector. A detailed description of the testing and construction of the CDF silicon tracker is presented. Measurements of the tracking efficiency of the completed detector are also provided. Using 36 pb{sup -1} of the J/{psi} data sample collected by CDF between February and October 2002, the inclusive B {yields} J/{psi} X cross-section is measured in p{bar p} interactions at {radical}s = 1.96 TeV/c{sup 2}. The fraction of J/{psi} events arising from the decay of b hadrons is extracted using an unbinned maximum likelihood fit to the decay length of the J/{psi} candidates. The p{sub T} dependent differential cross section for inclusive B {yields} J/{psi} X events with rapidity |y| < 0.6 is obtained by combining the B-fraction result with a measurement of the J/{psi} differential cross-section. For 2.0 < p{sub T}(J/{psi}) < 17.0 GeV/c, the integrated B {yields} J/{psi} X cross-section is measured to be {sigma}(J/{psi}, B) {center_dot} {Beta}(J/{psi} {yields} {mu}{mu}) = 16.02 {+-} 0.24(stat){sub -2.20}{sup +2.26}(syst) nb.
Date: January 1, 2004
Creator: Waschke, Simon
Partner: UNT Libraries Government Documents Department

A Measurement of the Bs Lifetime at CDF Run II

Description: This thesis describes a measurement of the proper lifetime of the B{sub s}{sup 0} mesons produced in proton-antiproton collisions at a center of mass energy of 1.96 TeV, collected by the CDF experiment at Fermilab. The B{sub s}{sup 0} meson lifetime is measured in its semileptonic decay mode, B{sub s}{sup 0} {yields} {ell}{sup +}{nu}{sub {ell}}D{sub s}{sup -}. The D{sub s}{sup -} meson candidates are reconstructed in the decay mode D{sub s}{sup -} {yields} {phi}{pi}, with {phi} {yields} K{sup +}K{sup -}, in a trigger sample which requires a muon or an electron and another track which has a large impact parameters. The large impact parameter track is required by the silicon vertex trigger which is an innovative triggering device which has not previously been used in lifetime measurements. A total of 905 {+-} B{sub s}{sup 0} candidates are reconstructed in a sample which has an integrated luminosity of 140 pb{sup -1} using data gathered between February 2002 and August 2003. The pseudo-proper lifetime distribution of these candidates is fitted with an unbinned maximum likelihood fit. This fit takes into account the missing momentum carried by the neutrino and the bias caused by requiring a track with large impact parameter by modeling these effects in simulations. The fit yields the result for the B{sub s}{sup 0} proper lifetime: c{tau}(B{sub s}{sup 0}) = 419 {+-} 28{sub -13}{sup +16} {micro}m and {tau}(B{sub s}{sup 0}) = 1.397 {+-} 0.093{sub -0.043}{sup +0.053} ps where the first error is statistical and the second is systematic.
Date: January 1, 2004
Creator: Farrington, Sinead
Partner: UNT Libraries Government Documents Department

A Measurement of the Lifetime of the Lambda_b Baryon with the CDF Detector at the Tevatron Run II

Description: In March 2001 the Tevatron accelerator entered its Run II phase, providing colliding proton and anti-proton beams with an unprecedented center-of-mass energy of 1.96 TeV. The Tevatron is currently the only accelerator to produce {Lambda}{sub b} baryons, which provides a unique opportunity to measure the properties of these particles. This thesis presents a measurement of the mean lifetime of the {Lambda}{sub b} baryon in the semileptonic channel {Lambda}{sub b}{sup 0} {yields} {Lambda}{sub c}{sup +} {mu}{sup -} {bar {nu}}{sub {mu}}. In total 186 pb{sup -1} of data were used for this analysis, collected with the CDF detector between February 2002 and September 2003. To select the long-lived events from b-decays, the secondary vertex trigger was utilized. This significant addition to the trigger for Run II allows, for the first time, the selection of events with tracks displaced from the primary interaction vertex at the second trigger level. After the application of selection cuts this trigger sample contains approximately 991 {Lambda}{sub b} candidates. To extract the mean lifetime of {Lambda}{sub b} baryons from this sample, they transverse decay length of the candidates is fitted with an unbinned maximum likelihood fit under the consideration of the missing neutrino momentum and the bias introduced by the secondary vertex trigger. The mean lifetime of the {Lambda}{sub b} is measured to be {tau} = 1.29 {+-} 0.11(stat.) {+-} 0.07(syst.) ps equivalent to a mean decay length of c{tau} = 387 {+-} 33(stat.) {+-} 21 (syst.) {micro}m.
Date: December 1, 2004
Creator: Unverhau, Tatjana Alberta Hanna & U., /Glasgow
Partner: UNT Libraries Government Documents Department

Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer

Description: The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p (~ 0 ~ p) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.
Date: December 31, 2004
Creator: Hamilton, David
Partner: UNT Libraries Government Documents Department

Search for doubly-charged Higgs Boson production in the decay H++ H-- ---> mu+ mu+ mu- mu - with the D0 detector at s**(1/2) = 1.96-TeV

Description: This work presents a search for the pair production of doubly-charged Higgs Bosons in the process p{bar p} {yields} H{sup ++}H{sup --} {yields} {mu}{sup +}{mu}{sup +}{mu}{sup -}{mu}{sup -} using inclusive dimuon events. These data correspond to an integrated luminosity of about 113 pb 1 and were recorded by the D0 experiment between August 2002 and June 2003. In the absence of a signal, 95% confidence level mass limits of M(H{sub L}{sup {+-}{+-}}) > 118.6 GeV/c{sup 2} and M(H{sub R}{sup {+-}{+-}}) > 98.1 GeV/c{sup 2} are set for left-handed and right-handed doubly-charged Higgs boson, assuming 100% branching into muons and hypercharge |Y| = 2 and Yukawa coupling h{sub {mu}{mu}} > 10{sup -7}. This is the first search for doubly-charged Higgs bosons at hadron colliders. It significantly extends the previous mass limit of 100.5 GeV/c{sup 2} for a left-handed doubly-charged Higgs boson measured in the muon final states by the OPAL collaboration.
Date: January 1, 2004
Creator: Zdrazil, Marian & /SUNY, Stony Brook
Partner: UNT Libraries Government Documents Department

Search for chargino-neutralino pair production with the D0 detector at the Tevatron

Description: We have searched for evidence for the chargino {bar {chi}}{sub 1}{sup {+-}} and neutralino ({bar {chi}}{sub 2}{sup 0}) pair production in proton anti-proton collisions at a center of mass energy of 1.96 TeV with the D0 detector at the Fermilab Tevatron Collider. Data corresponding to an integrated luminosity of 124.5 pb{sup -1} were examined for events containing like-sign electron pair and missing energy for the first time at D0. They observed no excess above the yield from Standard Model processes. In the framework of mSUGRA, they set a series of upper limits, at the 95% confidence level, of the chargino neutralino production cross section times the branching fraction to tri-electrons as a function of the chargino mass. These limits range from 0.79 pb for m{sub {bar {chi}}{sub 1}{sup {+-}}} = 86.9 GeV/c{sup 2} to 0.52 pb for m{sub {bar {chi}}{sub 1}{sup {+-}}} = 115.1 GeV/c{sup 2}.
Date: January 1, 2004
Creator: Wang, Zhongmin & /SUNY, Stony Brook
Partner: UNT Libraries Government Documents Department

Measurement of the Ratio of Branching Fractions Br(Bs -> Ds- pi+)/Br(B -> D- pi+) at CDF-II

Description: The measurement of B{sub s}{sup 0} mixing is one of the flagship analyses for the Run II B physics program. The sensitivity of the measurement to the frequency of B{sub s}{sup 0} oscillations strongly depends on the number of reconstructed B{sub s}{sup 0} mesons. They present the measurement of the ratio of branching fractions Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}), which directly influences the number of B{sub s}{sup 0} events available for the measurement of B{sub s}{sup 0} mixing at CDF-II. They analyze 115 pb{sup -1} of data collected with the CDF-II detector in p{bar p} collisions at {radical}s = 1.96 TeV using a novel displaced track trigger. They reconstruct 78 {+-} 11 B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +} decays at 1153 {+-} 45 B{sup 0} {yields} D{sup -}{pi}{sup +} decays with good signal to background ratio. This is the world's largest sample of fully reconstructed B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +} decays. They find the ratio of production fractions multiplied by the ratio of branching fractions to be: f{sub s}/f{sub d} {center_dot} Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}) = 0.325 {+-} 0.046(stat) {+-} 0.034(syst) {+-} 0.084 (BR). Using the world average value of f{sub s}/f{sub d} = 0.26 {+-} 0.03, we infer that the ratio of branching fractions is: Br(B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +})/Br(B{sup 0} {yields} D{sup -}{pi}{sup +}) = 1.25 {+-} 0.18(stat) {+-} 0.13(syst) {+-} 0.32(BR) {+-} 0.14(PR) where the last uncertainty is due to the uncertainty on the world average measurement of the ratio of B{sub s}{sup 0} to B{sup 0} production rates, f{sub s}/f{sub d}.
Date: March 1, 2004
Creator: Furic, Ivan Kresimir & /MIT
Partner: UNT Libraries Government Documents Department

Development and Performance of Detectors for the Cryogenic Dark Matter Search Experiment with an Increased Sensitivity Based on a Maximum Likelihood Analysis of Beta Contamination

Description: The Cryogenic Dark Matter Search (CDMS) uses cryogenically-cooled detectors made of germanium and silicon in an attempt to detect dark matter in the form of Weakly-Interacting Massive Particles (WIMPs). The expected interaction rate of these particles is on the order of 1/kg/day, far below the 200/kg/day expected rate of background interactions after passive shielding and an active cosmic ray muon veto. Our detectors are instrumented to make a simultaneous measurement of both the ionization energy and thermal energy deposited by the interaction of a particle with the crystal substrate. A comparison of these two quantities allows for the rejection of a background of electromagnetically-interacting particles at a level of better than 99.9%. The dominant remaining background at a depth of {approx} 11 m below the surface comes from fast neutrons produced by cosmic ray muons interacting in the rock surrounding the experiment. Contamination of our detectors by a beta emitter can add an unknown source of unrejected background. In the energy range of interest for a WIMP study, electrons will have a short penetration depth and preferentially interact near the surface. Some of the ionization signal can be lost to the charge contacts there and a decreased ionization signal relative to the thermal signal will cause a background event which interacts at the surface to be misidentified as a signal event. We can use information about the shape of the thermal signal pulse to discriminate against these surface events. Using a subset of our calibration set which contains a large fraction of electron events, we can characterize the expected behavior of surface events and construct a cut to remove them from our candidate signal events. This thesis describes the development of the 6 detectors (4 x 250 g Ge and 2 x 100 g Si) used in the 2001-2002 CDMS ...
Date: January 1, 2004
Creator: Driscoll, Donald D. & U., /Case Western Reserve
Partner: UNT Libraries Government Documents Department

Atmospheric Neutrinos in the MINOS Far Detector

Description: The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.
Date: December 1, 2004
Creator: Howcroft, Caius L.F. & U., /Cambridge
Partner: UNT Libraries Government Documents Department

The CMS forward calorimeter prototype design studies and Omega(c)0 search at E781 experiment at Fermilab

Description: In the fit part, the Compact Muon Solenoid (CMS) forward calorimeter design studies are presented. The forward calorimeter consists of quartz fibers embedded in a steel absorber. Radiation damage studies of the quartz fiber and the absorber as well as the results of the first pre-production prototype PPP-I are presented. In the second part, the {Omega}{sub c}{sup 0}search studies at the SELEX (E781) experiment at FermiLab are presented. 107 {+-} 22 {Omega}{sub c}{sup 0} events are observed in three decay modes. The relative branching ratio ({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) is measured as 2.00 {+-} 0.45(stat) {+-} 0.32(sys).
Date: May 1, 2004
Creator: Ayan, Ahmet Sedat & U., /Iowa
Partner: UNT Libraries Government Documents Department

Measurement of BR(Bu to phi K)/BR(Bu to J/psi K) at the collider detector at Fermilab

Description: This thesis presents evidence for the decay mode B{sup {+-}} {yields} {phi}K{sup {+-}} in p{bar p} collisions at {radical}s = 1.96 TeV using (120 {+-} 7)pb{sup -1} of data collected by the Collider Detector at Fermilab (CDF). This signal is then used to measure the branching ratio relative to the decay mode B{sup {+-}} {yields} J/{psi}K{sup {+-}}. The measurement starts from reconstructing the two decay modes: B{sup {+-}} {yields} {phi}K{sup {+-}}, where {phi} {yields} K{sup +}K{sup -} and B{sup {+-}} {yields} J/{psi}K{sup {+-}}, where J/{psi} {yields} {mu}{sup +}{mu}{sup -}. The measurement yielded 23 {+-} 7 B{sup {+-}} {yields} {phi}K{sup {+-}} events, and 406 {+-} 26 B{sup {+-}} {yields} J/{psi}K{sup {+-}} events. The fraction of B{sup {+-}} {yields} J/{psi}K{sup {+-}} events where the J/{psi} subsequently decayed to two muons (as opposed to two electrons) was found to be f{sub {mu}{mu}} = 0.839 {+-} 0.066. The relative branching ratio of the two decays is then calculated based on the equation: BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = N{sub {phi}K}/N{sub {psi}K} {center_dot}f{sub {mu}{mu}} BR(J/{psi} {yields} {mu}{sup +}{mu}{sup -})/BR({phi} {yields} K{sup +}K{sup -}) {epsilon}{sub {mu}{mu}}K/{epsilon}KKK R({epsilon}{sub iso}). The measurement finds BR(B{sup {+-}} {yields} {phi}K{sup {+-}})/BR(B{sup {+-}} {yields} J/{psi}K{sup {+-}}) = 0.0068 {+-} 0.0021(stat.) {+-} 0.0007(syst.). The B{sup {+-}} {yields} {phi}K{sup {+-}} branching ratio is then found to be BR(B{sup {+-}} {yields} {phi}K{sup {+-}}) = [6.9 {+-} 2.1(stat.) {+-} 0.8(syst.)] x 10{sup -6}. This value is consistent with similar measurements reported by the e{sup +}e{sup -} collider experiments BaBar[1], Belle[2], and CLEO[3].
Date: October 1, 2004
Creator: Napora, Robert A. & U., /Johns Hopkins
Partner: UNT Libraries Government Documents Department

Search for Excited or Exotic Electron Production Using the Dielectron + Photon Signature at CDF in Run II

Description: The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use {approx} 202 pb{sup -1} of data collected in p{bar p} collisions at {radical}s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section {sigma}({bar p}p {yields} ee* {yields} ee{gamma}) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (M{sub e*}) and the compositeness energy scale ({Lambda}). In the contact-interaction model, for which there are no previously published limits, they find M{sub e*} < 906 GeV is excluded for M{sub e*} = {Lambda}. In the gauge-mediated model, the exclusion region in the M{sub e*} versus the phenomenological coupling f/{Lambda} parameter space is extended to M{sub e*} < 430 GeV for f/{Lambda} {approx} 10{sup -2} GeV{sup -1}. In comparison, other experiments have excluded M{sub e*} < 280 GeV for f/{Lambda} {approx} 10{sup -2} GeV{sup -1}.
Date: July 1, 2004
Creator: Gerberich, Heather Kay & U., /Duke
Partner: UNT Libraries Government Documents Department

Spatially indirect excitons in coupled quantum wells

Description: Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical ...
Date: March 1, 2004
Creator: Lai, Chih-Wei Eddy
Partner: UNT Libraries Government Documents Department

Novel room temperature ferromagnetic semiconductors

Description: Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous ...
Date: November 1, 2004
Creator: Gupta, Amita
Partner: UNT Libraries Government Documents Department

Resonant soft X-ray emission spectroscopy of vanadium oxides andrelated compounds

Description: In today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one ''spintronic'' device that exploits both charge and ''spin'' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; and (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 {micro}m thick transparent pulsed laser deposited films of the Mn (< 4 at.%) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas ...
Date: November 1, 2004
Creator: Schmitt, Thorsten
Partner: UNT Libraries Government Documents Department

Soft X-ray emission spectroscopy of liquids and lithium batterymaterials

Description: Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite {pi}-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular orbital and ...
Date: October 27, 2004
Creator: Augustsson, Andreas
Partner: UNT Libraries Government Documents Department

The neutron electric form factor to Q² = 1.45 (GeV/c)²

Description: The nucleon elastic electromagnetic form factors are fundamental quantities needed for an understanding of nucleon and nuclear electromagnetic structure. The evolution of the Sachs electric and magnetic form factors with Q2, the square of the four-momentum transfer, is related to the distribution of charge and magnetization within the nucleon. High precision measurements of the nucleon form factors are essential for stringent tests of our current theoretical understanding of confinement within the nucleon. Measurements of the neutron form factors, in particular, those of the neutron electric form factor, have been notoriously difficult due to the lack of a free neutron target and the vanishing integral charge of the neutron. Indeed, a precise measurement of the neutron electric form factor has eluded experimentalists for decades; however, with the advent of high duty-factor polarized electron beam facilities, experiments employing polarization degrees of freedom have finally yielded the first precise measurements of this fundamental quantity. Following a general overview of the experimental and theoretical status of the nucleon form factors, a detailed description of an experiment designed to extract the neutron electric form factor from measurements of the neutron's recoil polarization in quasielastic 2H(e, e')1H scattering is presented. The experiment described here employed the Thomas Jefferson National Accelerator Facility's longitudinally polarized electron beam, a magnetic spectrometer for detection of the scattered electron, and a neutron polarimeter designed specifically for this experiment. Measurements were conducted at three Q2 values of 0.45, 1.13, and 1.45 (GeV/c)2, and the final results extracted from an analysis of the data acquired in this experiment are reported and compared with recent theoretical predictions for the nucleon form factors.
Date: February 1, 2004
Creator: Plaster, Bradley
Partner: UNT Libraries Government Documents Department

Muon Energy Calibration of the MINOS Detectors

Description: MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by {approx} 10%, which is equivalent to increasing the amount of data by 20%.
Date: September 1, 2004
Creator: Miyagawa, Paul S.
Partner: UNT Libraries Government Documents Department

A Search for the singlet-P state h(c)(1**1 P(1)) of charmonium in proton-antiproton annihilations at Fermilab experiment E835p

Description: The author presents the results of a search for the spin-singlet P-wave state h{sub c}(1{sup 1}P{sub 1}) of charmonium formed through proton-antiproton annihilation at Fermilab experiment E835. The decay channels which were studied were p{bar p} {yields} J/{psi} + X {yields} e{sup +}e{sup -} + X, p{bar p} {yields} J/{psi} + {pi}{sup 0} {yields} e{sup +}e{sup -} + {gamma}{gamma}, p{bar p} {yields} J/{psi} + {pi}{sup 0}{pi}{sup 0} {yields} e{sup +}e{sup -} + 4{gamma}, and the neutral channel p{bar p} {yields} {eta}{sub c}{gamma} {yields} ({gamma}{gamma}){gamma}. The decay p{bar p} {yields} J/{psi}{gamma} {yields} e{sup +}e{sup -}{gamma}, into which {sup 1}P{sub 1} decay is forbidden by C-parity conservation, was also examined for comparison. The 90% confidence upper limits for the decay channels studied in the mass range 3525.1-3527.3 MeV for a {sup 1}P{sub 1} resonance with a presumed width of 1.0 MeV were determined to be B(p{bar p} {yields} {sup 1}P{sub 1}) x B({sup 1}P{sub 1} {yields} J/{psi} + X) {le} 1.8 x 10{sup -7}, B(p{bar p} {yields} {sup 1}P{sub 1}) x B({sup 1}P{sub 1} {yields} J/{psi} + {pi}{sup 0}) {le} 1.2 x 10{sup -7}, and B(p{bar p} {yields} {sup 1}P{sub 1}) x B({sup 1}P{sub 1} {yields} J/{psi}{gamma}) {le} 1.0 x 10{sup -7}. No evidence for a {sup 1}P{sub 1} enhancement was observed in either of the two additional reactions studied; p{bar p} {yields} J/{psi} + {pi}{sup 0}{pi}{sup 0} {yields} e{sup +}e{sup -} + 4{gamma} and p{bar p} {yields} {eta}{sub c}{gamma} {yields} ({gamma}{gamma}){gamma}.
Date: December 1, 2004
Creator: Joffe, David Noah
Partner: UNT Libraries Government Documents Department