5,037 Matching Results

Search Results

An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems

Description: It was hypothesized that the variations in time to solution are driven by the competing mechanisms of exploration and exploitation.This thesis explores this hypothesis by examining two contrasting problems that embody the hypothesized tradeoff between exploration and exploitation. Plus one recall store (PORS) is an optimization problem based on the idea of a simple calculator with four buttons: plus, one, store, and recall. Integer addition and store are classified as operations, and one and memory recall are classified as terminals. The goal is to arrange a fixed number of keystrokes in a way that maximizes the numerical result. PORS 15 (15 keystrokes) represents the subset of difficult PORS problems and PORS 16 (16 keystrokes) represents the subset of PORS problems that are easiest to optimize. The goal of this work is to examine the tradeoff between exploitation and exploration in graph based evolutionary algorithm (GBEA) optimization. To do this, computational experiments are used to examine how solutions evolve in PORS 15 and 16 problems when solved using GBEAs. The experiment is comprised of three components; the graphs and the population, the evolutionary algorithm rule set, and the example problems. The complete, hypercube, and cycle graphs were used for this experiment. A fixed population size was used.
Date: May 8, 2012
Creator: Koch, Kaelynn
Partner: UNT Libraries Government Documents Department

Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV

Description: Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P{sub y}), along with the polarization transfers (C{sub x'} and C{sub z'} ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 – 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon polarization, and finally determine the azimuthal asymmetry and any systematic uncertainties associate with it, is comprehensively explained. This work shows that the collected data provide the kinematic coverage and statistics to test the available QCD-based models. The results of this study show that the available theoretical models in their current state do not adequately predict the azimuthal asymmetry in the energy region 1.1 – 2.3 GeV.
Date: May 20, 2012
Creator: Zachariou, Nicholas
Partner: UNT Libraries Government Documents Department

Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

Description: The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
Date: May 9, 2012
Creator: Casadei, Cecilia
Partner: UNT Libraries Government Documents Department

Mesoporous silica nanoparticles as smart and safe devices for regulating blood biomolecule levels

Description: Stimuli-responsive end-capped MSN materials are promising drug carriers that securely deliver a large payload of drug molecules without degradation or premature release. A general review of the recent progress in this field is presented, including a summary of a series of hard and soft caps for drug encapsulation and a variety of internal and external stimuli for controlled release of different therapeutics, a discussion of the biocompatibility of MSN both in vitro and in vivo, and a description of the sophisticated stimuli-responsive systems with novel capping agents and controlled release mechanism. The unique internal and external surfaces of MSN were utilized for the development of a glucose-responsive double delivery system end-capped with insulin. This unique system consists of functionalized MSNs capable of releasing insulin when the concentration of sugar in blood exceeds healthy levels. The insulin-free nanoparticles are then up taken by pancreatic cells, and release inside of them another biomolecule that stimulates the production of more insulin. The in vivo application of this system for the treatment of diabetes requires further understanding on the biological behaviors of these nanoparticles in blood vessels. The research presented in this dissertation demonstrated the size and surface effects on the interaction of MSNs with red blood cell membranes, and discovered how the surface of the nanoparticles can be modified to improve their compatibility with red blood cells and avoid their dangerous side effects. In order to optimize the properties of MSN for applying them as efficient intracellular drug carriers it is necessary to understand the factors that can regulate their internalization into and exocytosis out of the cells. The correlation between the particle morphology and aggregation of MSNs to the effectiveness of cellular uptake is discussed and compared with different cell lines. The differences in the degree of exocytosis of MSNs between healthy ...
Date: May 15, 2011
Creator: Zhao, Yan
Partner: UNT Libraries Government Documents Department

Mesoporous silica nanoparticles for biomedical and catalytical applications

Description: Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an alternative of the traditional Friedel-Crafts reaction. And we will compare ...
Date: May 15, 2011
Creator: Sun, Xiaoxing
Partner: UNT Libraries Government Documents Department

MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions

Description: Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K{sub d}) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel ...
Date: May 11, 2011
Creator: Kang, Kyung
Partner: UNT Libraries Government Documents Department

Laser Processing of Metals and Polymers

Description: A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution optical microscopy, surface profilometry, Fourier transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD). Power spectral density (PSD) spectra computed from AFM data gives further insight into the effect of laser melting on the topography of the treated niobium.
Date: May 31, 2012
Creator: Singaravelu, Senthilraja
Partner: UNT Libraries Government Documents Department

Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

Description: This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Je#11;erson National Accelerator Facil- ity. For both, the weak neutral current interaction (WNC, mediated by the Z{sup 0} boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o#11; unpolarized target hadrons. HAPPEx-III, con- ducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q{sup 2} = 0.62 GeV{sup 2}. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (G{sup s}{sub E,M} ) to the nucleon electromagnetic form factors. A value of A{sub PV} = -23.803{+-}#6; 0.778 (stat){+-}#6; 0.359 (syst) ppm resulted in G{sup s}{sub E} + 0:517G{sup s}{sub M} = 0.003{+-} 0.010 (stat){+-} #6;0.004 (syst){+-}#6; #6;0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q{sup 2} = 0.009 GeV{sup 2}. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the {sup 208}Pb nucleus. The Z{sup 0} boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for #12;nding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the ex- perimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.
Date: May 31, 2012
Creator: Mercado, Luis
Partner: UNT Libraries Government Documents Department

Precision Measurement of Electroproduction of pi{sup 0} near Threshold

Description: Electromagnetic production of neutral pions near threshold is the most basic, lowest energy reaction in which a new hadron is created. The electromagnetic interaction is well understood so measurements of this reaction can yield direct insight into the hadronic production mechanism. During the past three decades there have been many developments in both the measurement and theory of threshold pion production, starting with measurements of photo-production at Saclay in 1986 and at Mainz in 1990. These measurements indicated a surprising discrepancy with so-called Low Energy Theorems (LETs) which are based on quite fundamental symmetries and considerations. Chiral Perturbation Theory (ChPT) is an e#11;ective #12;eld theoretic description of the nuclear force which contains the underlying symmetries of the force but deals with nucleons and pions rather than quarks and gluons. It has the advantage of being applicable at low energies but requires tuning some parameters to experimental data. Once these parameters have been determined ChPT predicts how the reaction should behave as a function of the kinematic variable. When applied to the reaction, p({gamma},{pi}{sup 0})p, near threshold it explained the discrepancy with the LETs and made predictions for electroproduction, p(e,e'p){pi}#25;{sup 0}. Electroproduction measurements at Mainz in the 1990's showed a clear discrepancy with these predictions of ChPT; with parameters determined from one set of kinematics the data for a second set lay far from the predicted value. However, recently completed measurements at Mainz disagreed with their previous measurements. In the experiment presented here, measurements of neutral pion electroproduction,p(e,e'p){pi}{sup 0}, were made in bins of momentum transfer, Q{sup 2}, between Q{sup 2} = 0:05 [GeV/c]{sup 2} and Q{sup 2} = 0:15 [GeV/c]{sup 2} and of center-of-mass energy, W, between 0 {<=}#20; W {<=}#20; 30 MeV (above threshold). The experiment was performed in Hall A at the Je#11;fferson Laboratory. Scattered electrons were detected ...
Date: May 1, 2012
Creator: Chirapatpimol, Khem
Partner: UNT Libraries Government Documents Department

Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

Description: In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.
Date: May 7, 2013
Creator: Beasley, Jonathan
Partner: UNT Libraries Government Documents Department

Synthesis of main group, rare-earth, and d{sup 0} metal complexes containing beta-hydrogen

Description: A series of organometallic compounds containing the tris(dimethylsilyl)methyl ligand are described. The potassium carbanions KC(SiHMe{sub 2}){sub 3} and KC(SiHMe{sub 2}){sub 3}TMEDA are synthesized by deprotonation of the hydrocarbon HC(SiHMe{sub 2}){sub 3} with potassium benzyl. KC(SiHMe{sub 2}){sub 3}TMEDA crystallizes as a dimer with two types of three-center-two-electron KH- Si interactions. Homoleptic Ln(III) tris(silylalkyl) complexes containing β-SiH groups M{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) are synthesized from salt elimination of the corresponding lanthanide halide and 3 equiv. of KC(SiHMe{sub 2}){sub 3}. The related reactions with Sc yield bis(silylalkyl) ate-complexes containing either LiCl or KCl. The divalent calcium and ytterbium compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) are prepared from MI{sub 2} and 2 equiv of KC(SiHMe{sub 2}){sub 3}. The compounds M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and La{C(SiHMe{sub 2}){sub 3}}{sub 3} react with 1 equiv of B(C{sub 6}F{sub 5}){sub 3} to give 1,3- disilacyclobutane {Me2Si-C(SiHMe2)2}2 and MC(SiHMe2)3HB(C6F5)3L, and La{C(SiHMe{sub 2}){sub 3}}{sub 2}HB(C{sub 6}F{sub 5}){sub 3}, respectively. The corresponding reactions of Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu) give the β-SiH abstraction product [{(Me{sub 2}HSi){sub 3}C}{sub 2}LnC(SiHMe{sub 2}){sub 2}SiMe{sub 2}][HB(C{sub 6}F{sub 5}){sub 3}] (Ln = Y, Lu), but the silene remains associated with the Y or Lu center. The abstraction reactions of M{C(SiHMe{sub 2}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2 }or TMEDA) and Ln{C(SiHMe{sub 2}){sub 3}}{sub 3} (Ln = Y, Lu, La) and 2 equiv of B(C{sub 6}F{sub 5}){sub 3} give the expected dicationic M{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2}L (M = Ca, Yb; L = THF{sub 2} or TMEDA) and dicationic mono(silylalkyl) LnC(SiHMe{sub 2}){sub 3}{HB(C{sub 6}F{sub 5}){sub 3}}{sub 2} (Ln = Y, Lu, La), respectively. Salt metathesis reactions of Cp{sub 2}(NR{sub 2})ZrX (X = Cl, I, OTf; R = ...
Date: May 2, 2013
Creator: Yan, Ka King
Partner: UNT Libraries Government Documents Department

Templated synthesis of nickel nanoparticles: Toward heterostructured nanocomposites for efficient hydrogen storage

Description: The world is currently facing an energy and environmental crisis for which new technologies are needed. Development of cost-competitive materials for catalysis and hydrogen storage on-board motor vehicles is crucial to lead subsequent generations into a more sustainable and energy independent future. This thesis presents work toward the scalable synthesis of bimetallic heterostructures that can enable hydrogen to compete with carbonaceous fuels by meeting the necessary gravimetric and volumetric energy densities and by enhancing hydrogen sorption/desorption kinetics near ambient temperatures and pressures. Utilizing the well-known phenomenon of hydrogen spillover, these bimetallic heterostructures could work by lowering the activation energy for hydrogenation and dehydrogenation of metals. Herein, we report a novel method for the scalable synthesis of silica templated zero-valent nickel particles (Ni⊂SiO{sub 2}) that hold promise for the synthesis of nickel nanorods for use in bimetallic heterostructures for hydrogen storage. Our synthesis proceeds by chemical reduction of a nickel-hydrazine complex with sodium borohydride followed by calcination under hydrogen gas to yield silica encapsulated nickel particles. Transmission electron microscopy and powder X-ray diffraction were used to characterize the general morphology of the resultant nanocapsules as well as the crystalline phases of the incorporated Ni{sup 0} nanocrystals. The structures display strong magnetic behavior at room temperature and preliminary data suggests nickel particle size can be controlled by varying the amount of nickel precursor used in the synthesis. Calcination under different environments and TEM analysis provides evidence for an atomic migration mechanism of particle formation. Ni⊂SiO{sub 2} nanocapsules were used as seeds to induce heterogeneous nucleation and subsequent growth within the nanocapsule via electroless nickel plating. Nickel nanoparticle growth occurs under high temperature alkaline conditions, however silica nanocapsule integrity is not maintained due to the incompatibility of silica with the growth conditions. Silica nanocapsule integrity is maintained under low temperature neutral conditions, but ...
Date: May 7, 2013
Creator: Nelson, Nicholas Cole
Partner: UNT Libraries Government Documents Department

Multitasking mesoporous nanomaterials for biorefinery applications

Description: Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and ...
Date: May 2, 2013
Creator: Kandel, Kapil
Partner: UNT Libraries Government Documents Department

Meausrement of the Neutron Radius of {sup 208}Pb Through Parity Violation in Electron Scattering

Description: In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R{sub n}, of a heavy nucleus and the proton radius, R{sub p}, to be in the order of several percent. To accurately obtain the difference, R{sub n}-R{sub p}, which is essentially a neutron skin, the Jefferson Lab Lead ({sup 208}Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 208}Pb at an energy of 1.06 GeV and a scattering angle of 5{degrees}#14;. Since Z{sup 0} boson couples mainly to neutrons, this asymmetry provides a clean measurement of R{sub n} with respect to R{sub p}. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x#2;10{sup 7} helicity-window quadruplets. The measured parity-violating electroweak asymmetry A{sub PV} = 0.656 {+-}#6; 0.060 (stat) {+-}#6; 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R{sub n}-R{sub p} = 0.33{sup +0.16}{sub -0.18} fm and provides the #12;first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of {sup 208}Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.
Date: May 31, 2013
Creator: Saenboonruang, Kiadtisak
Partner: UNT Libraries Government Documents Department

Studies of the structure and function of Mms6, a bacterial protein that promotes the formation of magnetic nanoparticles

Description: Here we report structural and functional studies of Mms6, a biomineralization protein that can promote the formation in vitro of magnetic nanoparticles with sizes and morphologies similar to the magnetites synthesized by magnetotactic bacteria. We found the binding pattern of Mms6 to ferric ion to be two-phase and multivalent. We quantatively determined that Mms6 binds one Fe{sup 3+} with a very high affinity (K{sub d} = 10{sup -16} M). The second phase of iron binding is multivalent and cooperative with respect to iron with a K{sub d} in the {mu}M range and a stoichiometry of about 20 ferric ion per protein molecule. We found that Mms6 exists in large particles of two sizes, one consisting of 20-40 monomeric units and the other of 200 units. From proteolytic digestion, ultracentrifugation and liposome fusion studies, we found that Mms6 forms a large micellar quaternary structure with the N-terminal domain self-assembling into a uniformly sized micelle and the C-terminal domain on the surface. The two-phase iron-binding pattern may be relevant to iron crystal formation. We propose that the first high affinity phase may stabilize a new conformation of the C-terminal domain that allows interaction with other C-terminal domains leading to a structural change in the multimeric protein complex that enables the second low affinity iron binding phase to organize iron and initiate crystal formation. We also observed a dimeric apparent molecular mass of the Mms6 C-terminal peptide (C21Mms6). We speculate that the C-terminal domain may form higher order quaternary arrangements on the surface of the micelle or when anchored to a membrane by the N-terminal domain. The change in fluorescence quenching in the N-terminal domain with iron binding suggests a structural integrity between the C- and N-terminal domains. The slow change in trp fluorescence as a function of time after adding iron suggests ...
Date: May 15, 2011
Creator: Wang, Lijun
Partner: UNT Libraries Government Documents Department

Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer

Description: The goal of the Q-weak experiment is to make a measurement of the proton's weak charge Q{sub W}{sup p} = 1 - 4 sin{sup 2}({theta}{sub W}) to an accuracy of {approx} 4%. This would represent a {approx} 0.3% determination of the weak mixing angle sin{sup 2}({theta}{sub W}) at low energy. The measurement may be used for a precision test of the Standard Model (SM) prediction on the running of sin{sup 2}({theta}{sub W}) with energy scale. The Q-weak experiment operates at Thomas Jefferson National Accelerator Facility (Jefferson Lab). The experiment determines Q{sub W}{sup p} by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q{sup 2} = 0.026 (GeV/c){sup 2} and forward angles (?8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.
Date: May 31, 2012
Creator: Pan, Jie
Partner: UNT Libraries Government Documents Department

The theoretical study of passive and active optical devices via planewave based transfer (scattering) matrix method and other approaches

Description: In this thesis, we theoretically study the electromagnetic wave propagation in several passive and active optical components and devices including 2-D photonic crystals, straight and curved waveguides, organic light emitting diodes (OLEDs), and etc. Several optical designs are also presented like organic photovoltaic (OPV) cells and solar concentrators. The first part of the thesis focuses on theoretical investigation. First, the plane-wave-based transfer (scattering) matrix method (TMM) is briefly described with a short review of photonic crystals and other numerical methods to study them (Chapter 1 and 2). Next TMM, the numerical method itself is investigated in details and developed in advance to deal with more complex optical systems. In chapter 3, TMM is extended in curvilinear coordinates to study curved nanoribbon waveguides. The problem of a curved structure is transformed into an equivalent one of a straight structure with spatially dependent tensors of dielectric constant and magnetic permeability. In chapter 4, a new set of localized basis orbitals are introduced to locally represent electromagnetic field in photonic crystals as alternative to planewave basis. The second part of the thesis focuses on the design of optical devices. First, two examples of TMM applications are given. The first example is the design of metal grating structures as replacements of ITO to enhance the optical absorption in OPV cells (chapter 6). The second one is the design of the same structure as above to enhance the light extraction of OLEDs (chapter 7). Next, two design examples by ray tracing method are given, including applying a microlens array to enhance the light extraction of OLEDs (chapter 5) and an all-angle wide-wavelength design of solar concentrator (chapter 8). In summary, this dissertation has extended TMM which makes it capable of treating complex optical systems. Several optical designs by TMM and ray tracing method are also ...
Date: May 15, 2011
Creator: Zhuo, Ye
Partner: UNT Libraries Government Documents Department

Self-assembled pentablock copolymers for selective and sustained gene delivery

Description: The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.
Date: May 15, 2011
Creator: Zhang, Bingqi
Partner: UNT Libraries Government Documents Department

SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A^p_1, at Large Bjorken x

Description: The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid {sup 14}NH{sub 3} polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetries measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A{sub 1}{sup p} and A{sub 2}{sup p} as well as the spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. This work addresses the extraction of the virtual Compton asymmetry A{sub 1}{sup p} in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q{sup 2} bins from 1.9 to 4.7 GeV{sup 2}.
Date: May 1, 2012
Creator: Mulholland, Jonathan
Partner: UNT Libraries Government Documents Department

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

Description: Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.
Date: May 25, 2011
Creator: Hamrick, Todd
Partner: UNT Libraries Government Documents Department

An Investigation of Preservice Teachers' Understanding of Buoyancy

Description: The purpose of this study was to examine the conceptual understandings of 55 elementary preservice teachers for the concept of buoyancy. This study used Ausubel’s Assimilation Theory (Ausubel, 1963) as a framework for a 15-week intervention that used pre/post concept maps (Cmaps), pre/post face-to-face semi-structured interviews, and drawings as evidences for change of formation of cognitive structures. Using a convergent parallel design and mixed methods approach, preservice teachers’ conceptions were analyzed using these evidences. Results of the study show that preservice teachers held both scientific conceptions and misconceptions about buoyancy as a force before and after an instructional intervention. Of importance were the existence of robust misconceptions about buoyancy that included inaccurate scientific knowledge about the foundational concepts of gravity, weight, mass, and density. The largest gains in scientific knowledge included the concepts of gravity, surface area, opposing forces, and the buoyant force. These concepts were consistently supported with evidence from post-concept maps, post, semi-structured interviews, and drawings. However, high frequencies of misconceptions were associated with these same aforementioned concepts as well as additional misconceptions about buoyancy-related concepts (i.e., weight, density, displacement, and sinking/floating). A paired t test showed a statistically significant difference (t = -3.504, p = .001) in the total number of scientifically correct concepts for the pre-concept maps (M = 0.51, SD = .879) and post-concept maps (M = 1.25, SD = 1.542). The Cohen’s d effect size was small, .47. Even through gains for the pre/post concept maps were noted, a qualitative analysis of the results indicated that not only were there serious gaps in the participant’s scientific understanding of buoyancy, after the instructional intervention an increased number of misconceptions were presented alongside the newly learned concepts. A paired t test examining misconceptions showed that there was a statistically significant difference (t = -3.160, p = ...
Date: May 2016
Creator: Kirby, Benjamin
Partner: UNT Libraries

Biodiversity and Genetic Structure of Benthic Macroinvertebrates along an Altitudinal Gradient: A Comparison of the Windhond and Róbalo River Communities on Navarino Island, Chile

Description: Altitudinal gradients in Sub-Antarctic freshwater systems present unique opportunities to study the effect of distinct environmental gradients on benthic macroinvertebrate community composition and dispersal. This study investigates patterns in biodiversity, dispersal and population genetic structure of benthic macroinvertebrate fauna across an altitudinal gradient between two watersheds on Navarino Island in southern Chile. Patterns in diversity, density, evenness and functional feeding groups were not significantly different across the altitudinal gradient in both the Windhond and Róbalo Rivers. Taxa richness in both rivers generally increased from the headwaters of the river to the mouth, and functional feeding group patterns were consistent with the predictions of the River Continuum Concept. Population genetic structure and gene flow was investigated by sampling the mitochondrial cytochrome oxidase I gene in two invertebrate species with different dispersal strategies. Hyalella simplex (Amphipoda) is an obligate aquatic species, and Meridialaris chiloeense (Ephemeroptera) is an aquatic larvae and a terrestrial winged adult. Contrasting patterns of population genetic structure were observed. Results for Hyalella simplex indicate significant differentiation in genetic structure in the Amphipod populations between watersheds and lower genetic diversity in the Róbalo River samples, which may be a result of instream dispersal barriers. Meridialaris chiloeense exhibited weak population structure but higher genetic diversity, which suggests this species is able to disperse widely as a winged adult.
Date: May 2016
Creator: Pulliam, Lauren
Partner: UNT Libraries

Parents’ Reported Utilization, Accessibility, and Effectiveness of Academic Support Resources for Military Adolescents at Fort Hood Military Base

Description: Academic support resources are increasingly available to military-connected youth; however, the military community, in general, tends to under-utilize available resources. The research literature has not clearly identified accessibility to military academic support resources or perceived effectiveness of resources as explanations for under-utilization of adolescent support services. The current research study examines military parents' perceptions of academic resource programs looking at how parents' perception of resource accessibility and resource effectiveness were related to program utilization. Based on qualitative analysis of military parent interviews, utilization was related to both accessibility and effectiveness. This research adds to the literature by identifying the relationship to between accessibility and utilization and reported effectiveness and utilization of academic support resources.
Date: May 2016
Creator: Booker, Dana Dean
Partner: UNT Libraries

Paul Robert Fauchet's Symphony in B-flat: A Performance Edition for Modern Wind Band Instrumentation

Description: Paul Robert Fauchet's Symphonie pour Musique d'Harmonie, known in the United States as Symphony in B-flat, is a four-movement composition spanning nearly thirty minutes in length and written in the style of the late romantic composers. Despite its place as one of the first symphonies for wind band, a performance of the piece that represents the composer's 1926 orchestration is difficult due to the inclusion of instruments that are no longer in common practice, including bugles, alto horns, and saxhorns. Later American editions of the work by James Robert Gillette (1933) and Frank Campbell-Watson (1948/1949) replaced these instruments, but also took several other liberties with orchestration and voicing. The primary purpose of this study was the creation of a performance edition of the Symphony for modern wind band that is accessible to a larger audience of performers and listeners. The method involved in creating the modern edition eliminates errors of extant editions and clarifies a number of the discrepancies surrounding the symphony's multiple publications. This edition attempts to retain the composer's voicing and orchestration choices. To accomplish this, the present project considered where modern instrumentation differed from the original sources and attempted to balance timbral similarities between those instruments, while also considering ease of comprehension for a modern ensemble to perform the work. Sources used to create this edition included all published editions of scores and parts, as well as a newly created full score of the 1926 printed parts. The study concludes with the inclusion of the full score of the new performance edition.
Date: May 2016
Creator: Kitelinger, Shannon Monroe
Partner: UNT Libraries