Search Results

A Collapsing Result Using the Axiom of Determinancy and the Theory of Possible Cofinalities

Description: Assuming the axiom of determinacy, we give a new proof of the strong partition relation on ω1. Further, we present a streamlined proof that J<λ+(a) (the ideal of sets which force cof Π α < λ) is generated from J<λ+(a) by adding a singleton. Combining these results with a polarized partition relation on ω1
Date: May 2001
Creator: May, Russell J.
Partner: UNT Libraries

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Description: In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
Date: December 1998
Creator: Richardson, Peter A. (Peter Adolph), 1955-
Partner: UNT Libraries

Polish Spaces and Analytic Sets

Description: A Polish space is a separable topological space that can be metrized by means of a complete metric. A subset A of a Polish space X is analytic if there is a Polish space Z and a continuous function f : Z —> X such that f(Z)= A. After proving that each uncountable Polish space contains a non-Borel analytic subset we conclude that there exists a universally measurable non-Borel set.
Date: August 1997
Creator: Muller, Kimberly (Kimberly Orisja)
Partner: UNT Libraries

Algebraically Determined Rings of Functions

Description: Let R be any of the following rings: the smooth functions on R^2n with the Poisson bracket, the Hamiltonian vector fields on a symplectic manifold, the Lie algebra of smooth complex vector fields on C, or a variety of rings of functions (real or complex valued) over 2nd countable spaces. Then if H is any other Polish ring and &#966;:H &#8594;R is an algebraic isomorphism, then it is also a topological isomorphism (i.e. a homeomorphism). Moreover, many such isomorphisms between function rings induce a homeomorphism of the underlying spaces. It is also shown that there is no topology in which the ring of real analytic functions on R is a Polish ring.
Date: August 2010
Creator: McLinden, Alexander Patrick
Partner: UNT Libraries

Understanding Ancient Math Through Kepler: A Few Geometric Ideas from The Harmony of the World

Description: Euclid's geometry is well-known for its theorems concerning triangles and circles. Less popular are the contents of the tenth book, in which geometry is a means to study quantity in general. Commensurability and rational quantities are first principles, and from them are derived at least eight species of irrationals. A recently republished work by Johannes Kepler contains examples using polygons to illustrate these species. In addition, figures having these quantities in their construction form solid shapes (polyhedra) having origins though Platonic philosophy and Archimedean works. Kepler gives two additional polyhedra, and a simple means for constructing the “divine” proportion is given.
Date: August 2002
Creator: Arthur, Christopher
Partner: UNT Libraries

Partially Ordered Groups and Rings

Description: This report presents both the most essential known results and new results in the theory of partially ordered groups and rings. This report deals with partially ordered groups and rings in an algebraic aspect because it is more important than partially ordered, fully ordered and lattice-ordered semigroup theory.
Date: August 1968
Creator: Lott, Kenneth L.
Partner: UNT Libraries

Some Fundamental Properties of Valuations Defined on a Field

Description: The purpose of this thesis is to develop some properties of a special class of functions called valuations. The study begins with and examination of the properties of valuations defined on an arbitrary field, F, and later, consideration is given to valuations defined on the field of rational numbers. The concept of a pseud-valuation is introduced and an investigation is made of the properties of pseudo-valuations.
Date: January 1969
Creator: Doerr, James C.
Partner: UNT Libraries

A Genesis for Compact Convex Sets

Description: This paper was written in response to the following question: what conditions are sufficient to guarantee that if a compact subset A of a topological linear space L^3 is not convex, then for every point x belonging to the complement of A relative to the convex hull of A there exists a line segment yz such that x belongs to yz and y belongs to A and z belongs to A? Restated in the terminology of this paper the question bay be given as follow: what conditions may be imposed upon a compact subset A of L^3 to insure that A is braced?
Date: May 1969
Creator: Ferguson, Ronald D.
Partner: UNT Libraries

Polynomial Curve and Surface Fitting

Description: The main problems of numerical analysis involve performing analytical operations, such as integration, differentiation, finding zeroes, interpolation, and so forth, of a function when all the data available are some samples of the function. Therefore, the purpose of this paper is to investigate the following problem: given a set of data points (x[sub i], y[sub i]) which are samples of some function, determine an approximating function. Further, extend the problem to that of determining an approximating function for a surface given some samples (x[sub i], y[sub j], z[sub ij]) of the surface.
Date: January 1968
Creator: Capps, Ann Dowdy
Partner: UNT Libraries

Simplicial Homology

Description: The purpose of this thesis is to construct the homology groups of a complex over an R-module. The thesis begins with hyperplanes in Euclidean n-space. Simplexes and complexes are defined, and orientations are given to each simplex of a complex. The chains of a complex are defined, and each chain is assigned a boundary. The function which assigns to each chain a boundary defines the set of r-dimensional cycles and the set of r—dimensional bounding cycles. The quotient of those two submodules is the r-dimensional homology group.
Date: August 1973
Creator: Chang, Chih-Chen
Partner: UNT Libraries