Search Results

The Measurement of the Third-order Elastic Constants for La3ga5sio14 (Lgs) and La3ga55ta05o14 (Lgt) Single Crystal

Description: Recently, the development of electronic technology towards higher frequencies and larger band widths has led to interest in finding new piezoelectric materials, which could be used to make filters with larger pass band widths and oscillators with better frequency stability. Langasite (La3Ga5SiO14, LGS) and its isomorphs have enticed considerable attention of researchers as a potential substrate material for piezoelectric device applications because of its high frequency stability and fairly good electromechanical coupling factors for acoustic wave devices. Nonlinear effect including drive level dependence, mode coupling, force-frequency effect and electroelasic effect are critical for the design of these devices. Third-order elastic constants (TOEC) play an important role in a quantitative analysis of these nonlinear effects. In particular these elastic constants are of great importance when the BAW (Bulk Acoustic Wave) and SAW (Surface Acoustic Wave) sensors of force, acceleration and so on are designed. Until now Langasite (LGS) and Langatate (LGT) crystal resonators have been qualified in terms of quality factor, temperature effect, isochronism defect and material quality. One of the most important advantages of those crystals is that they will not undergo phase transitions up to its melting temperature of 1450°. Presently there is no data on TOEC of LGT crystals. Our objective is to create an experimental procedure to measure and collect the complete set of third-order elastic constants of Langasite (La3Ga5SiO14) and Langatate (La3Ga5.5Ta0.5O14) crystals and compare the new values for langasite with values previously reported.
Date: December 2013
Creator: Karim, Md Afzalul
Partner: UNT Libraries

Direct Strength Method for Web Crippling of Cold-formed Steel C and Z Sections Subjected to Interior One Flange Loading and End One Flange Loading

Description: The main objective of this research is to extend the “Direct strength method” for determining the web crippling strength of cold-formed steel C and Z sections subjected to End one flange loading and Interior one flange loading conditions. Direct strength method is applied for designing the columns and beams earlier. The existing specifications equation for calculating the web crippling strength of cold-formed steels designed by American Institute of Iron and Steel is very old method and it is based on the extensive experimental investigations conducted at different universities. Calculating the web crippling strength of cold-formed steels using direct strength method is a new technique. In the present research the web crippling strength of cold-formed steels were calculated using Direct Strength Method. The experimental data is collected from the tests that were conducted at different universities. The critical buckling strength of the members were calculated using Abaqus. Microsoft excel is used to generate the equations. The safety and resistance factors for the designed equations were calculated using “Load and resistance factor design” and “Allowable strength design” from North American Cold-Formed Steel Specification, 2012 edition book.
Date: December 2015
Creator: Dara, Martin Luther
Partner: UNT Libraries

Spray Cooling with Hfc-134a and Hfo-1234yf for Thermal Management of Automotive Power Electronics

Description: This study aims to experimentally investigate the spray cooling characteristics for active two-phase cooling of automotive power electronics. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. Two types of refrigerants, HFC-134a (R-134a) and HFO-1234yf, are selected as the working fluids. The test section (heater), made out of oxygen-free copper, has a 1-cm2 plain, smooth surface prepared following a consistent procedure, and would serve as a baseline case. Matching size thick film resistors, attached onto the copper heaters, generate heat and simulate high heat flux power electronics devices. The tests are conducted by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves. The working fluid is kept at room temperature level (22oC). Performance comparisons are made based on heat transfer coefficient (HTC) and critical heat flux (CHF) values. Effects of spray characteristics and liquid flow rates on the cooling performance are investigated with the selected coolants. Three types of commercially available nozzles that generate full-cone sprays with fine droplets are utilized in the tests. Effect of liquid flow rate is evaluated varying flow rates at 2, 3, 4 ml/s. The experimental results obtained from this study provide a framework for spray cooling performance with the current and next-generation refrigerants aimed for advanced thermal management of automotive power electronics.
Date: December 2015
Creator: Yaddanapudi, Satvik Janardhan
Partner: UNT Libraries

Direct Strength Method for Web Crippling of Cold-formed Steel C-sections

Description: Web crippling is a form of localized buckling that occurs at points of transverse concentrated loading or supports of thin-walled structural members. The theoretical computation of web crippling strength is quite complex as it involves a large number of factors such as initial imperfections, local yielding at load application and instability of web. The existing design provision in North American specification for cold-formed steel C-sections (AISI S100, 2007) to calculate the web-crippling strength is based on the experimental investigation. The objective of this research is to extend the direct strength method to the web crippling strength of cold-formed steel C-sections. ABAQUS is used as a main tool to apply finite element analysis and is used to do the elastic buckling analysis. The work was carried out on C-sections under interior two flange (ITF) loading, end two flange (ETF) loading cases. Total of 128 (58 ITF, 70 ETF) sections were analyzed. Sections with various heights (3.5 6 in.) and various lengths (21 in. to 36 in.) were considered. Data is collected from the tests conducted in laboratory and the data from the previous researches is used, to extend the direct strength method to cold formed steel sections. Proposing a new design for both the loading cases and calculation of the resistance factors under (AISI S100, 2007) standards is done.
Date: May 2013
Creator: Seelam, Praveen Kumar Reddy
Partner: UNT Libraries

Mist Characterization in Drilling 1018 Steel

Description: Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.
Date: August 2012
Creator: Cole, Ian
Partner: UNT Libraries

Effects of Minimum Quantity Lubrication (Mql) on Tool Life in Drilling Aisi 1018 Steel

Description: It has been reported that minimum quantity lubrication (MQL) provides better tool life compared to flood cooling under some drilling conditions. In this study, I evaluate the performance of uncoated HSS twist drill when machining AISI 1018 steel using a newly developed lubricant designed for MQL (EQO-Kut 718 by QualiChem Inc.). A randomized factorial design was used in the experiment. The results show that a tool life of 1110 holes with a corresponding flank wear of 0.058 mm was realized.
Date: August 2012
Creator: Maru, Tejas
Partner: UNT Libraries

Application of Cyclic Polarization of Aluminum 3003 Used in All-Aluminum Microchannel Heat Exchangers

Description: All-aluminum microchannel heat exchangers are designed to significantly reduce refrigerant charge requirements, weight, reduced brazed joints, and decreased potential for leakage by increasing reliability. Al 3003 alloy is corrosion resistant and can be formed, welded, and brazed but the issue with all-aluminum heat exchangers is localized corrosion (pitting) in corrosive environments. Currently, there is no universally accepted corrosion test that all coil manufacturers use to characterize their products. Electrochemical testing method of cyclic polarization was employed in this investigation and relevant parameters including electrolyte corrosive agent and its concentration, electrolyte pH, and applied potential scan rate was varied to find an optimal set of parameters. Results of cyclic polarization of Al 3003 in electrolytes containing various concentrations of NaCl were compared with those of the tests in Sea Water Acidified Accelerated Test (SWAAT) electrolyte and it is shown the SWAAT electrolyte (4.2% sea salt acidified to pH of 2.9) is by far stronger (in terms of corrosivity) than typical 3.5% NaCl solution used in most corrosion testing. Corrosion rates (g/m2yr) of Al 3003 measured in this investigation were comparable to those provided by ISO 9223 standard corresponding to C1 through CX categories. Duration of cyclic polarization test is much shorter than that of SWAAT and results obtained in this test is more reproducible compared to those of SWAAT. Scanning electron microscopy micrographs show typical pit depths of about 50 μm.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Barnes, Javier
Partner: UNT Libraries